Cyber-physical Systems. Pedro H. J. Nardelli
Чтение книги онлайн.

Читать онлайн книгу Cyber-physical Systems - Pedro H. J. Nardelli страница 8

Название: Cyber-physical Systems

Автор: Pedro H. J. Nardelli

Издательство: John Wiley & Sons Limited

Жанр: Личные финансы

Серия:

isbn: 9781119785187

isbn:

СКАЧАТЬ

      As a prelude, this first chapter will explicitly state the philosophical position followed in this book. The chapter starts by highlighting what is spontaneously thought under the term “CPS” to then argue the reasons why a general theory is necessary to build scientific knowledge about this object of inquiry and design. A brief historical perspective of closely related fields, namely control theory, information theory, and cybernetics, will also be given followed by a necessary digression of philosophical positions and possible misinterpretations of such broad theoretical constructions. In summary, the proposed demarcation can be seen as a risk management action to avoid mistakes arising from commonsense knowledge and other possible misconceptions in order to “clear the path” for the learning process to be carried out in the following hundreds of pages.

      CPS is a term not broadly employed in everyday life. Its usage has a technical origin and is related to digitalization of processes across different sectors so that the term “CPS” has ended up being mostly used by academics in information technology, engineering, practitioners in industry, and managers. Such a broad concept usually leads to misunderstandings so much so that relevant standardization bodies have channeled efforts trying to establish a shared meaning. One remarkable example is the National Institute of Standards and Technology (NIST) located in the United States. NIST has several working groups related to CPS, whose outcomes are presented on a dedicated website [1]. In NIST's own words,

      Cyber‐Physical Systems (CPS) comprise interacting digital, analog, physical, and human components engineered for function through integrated physics and logic. These systems will provide the foundation of our critical infrastructure, form the basis of emerging and future smart services, and improve our quality of life in many areas.

      Cyber‐physical systems (CPS) will bring advances in personalized health care, emergency response, traffic flow management, and electric power generation and delivery, as well as in many other areas now just being envisioned. CPS comprise interacting digital, analog, physical, and human components engineered for function through integrated physics and logic. Other phrases that you might hear when discussing these and related CPS technologies include:

       Internet of Things (IoT)

       Industrial Internet

       Smart Cities

       Smart Grid

       “Smart” Anything (e.g. Cars, Buildings, Homes, Manufacturing, Hospitals, Appliances)

      As a commonplace when trying to determine the meaning of umbrella terms, the definition of CPS proposed by NIST is still too broad and vague (and excessively utopian) to become susceptible of scientific inquiry. On the other hand, such a definition offers us a starting point, which can be seen as the raw material of our theoretical investigation. A careful reading of the NIST text indicates the key common features of the diverse list of CPSs:

       There are physical processes that can be digitalized with sensors or measuring devices;

       These data can be processed and communicated to provide information of such processes;

       These informative data are the basis for decisions (either by humans or by machines) of possible actions that are capable of creating “smartness” in the CPS;

       CPSs are designed to intervene (improve) different concrete processes of our daily lives; therefore, they affect and are affected by different aspects of society.

Schematic illustration of a CPS.

      The idea of having a general theory is, roughly speaking, to characterize in a nonsubjective manner a very well‐defined symbolic object that incorporates all the constitutive aspects of a class of real‐world objects and therefrom obtain new knowledge by both symbolic manipulation and experimental tests. This generalization opens the path for moving beyond know‐how‐style of knowledge toward abstract, scientific conceptualizations, which are essential to assess existing objects, design new ones, and define their fundamental limits.

      This example serves as a very simplified illustration of the difference between technical knowledge (know‐how) and scientific knowledge. We are going to discuss sciences and scientific practice in more detail when pinpointing the philosophical position taken throughout this book. At this point, though, we should return to our main concern: the need for a general theory that conceptualizes CPSs. Like the particular chocolate cake, the existence of smart grids or cities, or even fully automated production lines neither precludes nor requires a general theory. Actually, their existence, the challenges in their particular deployments, and their specific operation can be seen as the necessary raw material for the scientific theory that would build СКАЧАТЬ