Sustainable Solutions for Environmental Pollution, Volume 2. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Sustainable Solutions for Environmental Pollution, Volume 2 - Группа авторов страница 38

СКАЧАТЬ Blue (TB) removal from aqueous solution using lemna minor. Int. J. Phytoremediat., 20, 10, 1049–1054, 2018, doi: 10.1080/15226514.2018.1460304.

      Neculita, C.M., Zagury, G.J., Bussière, B., Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J. Environ. Qual., 36, 1, 1–16, 2007, doi: 10.2134/jeq2006.0066.

      Ng, G.-H.C., Yourd, A.R., Johnson, N.W., Myrbo, A.E., Modeling hydrologic controls on sulfur processes in sulfate-impacted wetland and stream sediments. J. Geophys. Res. Biogeosci., 122, 9, 2435–2457, 2017, doi: 10.1002/2017jg003822.

      Nguyen, P.M., Afzal, M., Ullah, I., Shahid, N., Baqar, M., Arslan, M., Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. Environ. Sci. Pollut. Res., 26, 21, 21109–21126, 2019a, doi: 10.1007/ s11356-019-05320-w.

      Nguyen, T.T., Ngo, H.H., Guo, W., Wang, X.C., Ren, N., Li, G., Ding, J., Liang, H., Implementation of a specific urban water management - Sponge City. Sci. Total Environ., 652, 147–162, 2019b, doi: 10.1016/j.scitotenv.2018.10.168.

      Nielsen, M.E., Reimers, C.E., Stecher, H.A., Enhanced power from chambered benthic microbial fuel cells. Environ. Sci. Technol., 41, 22, 7895–7900, 2007, doi: 10.1021/es071740b.

      Niu, X.J., Wei, A.S., Li, Y.D., Mi, L.N., Yang, Z.Q., Song, X.F., Phosphine in paddy fields and the effects of environmental factors. Chemosphere, 93, 9, 1942– 1947, 2013, doi: 10.1016/j.chemosphere.2013.06.078.

      Njambuya, J., Stiers, I., Triest, L., Competition between Lemna minuta and Lemna minor at different nutrient concentrations. Aquat. Bot., 94, 4, 158–164, 2011, doi: 10.1016/j.aquabot.2011.02.001.

      Oberholster, P., Cheng, P.-H., Botha, A., Hobbs, P., Hill, L., Assessment of selected macroalgae for use in a biological hybrid system for treating sulphur in acid mine drainage (AMD). J. Appl. Phycol., 30, 1361–1370, 2017, doi: 10.1007/ s10811-017-1314-0.

      Oberholster, P.J., Cheng, P.H., Genthe, B., Steyn, M., The environmental feasibility of low-cost algae-based sewage treatment as a climate change adaption measure in rural areas of SADC countries. J. Appl. Phycol., 31, 1, 355–363, 2019, doi: 10.1007/s10811-018-1554-7.

      Ockenden, M.C., Deasy, C., Quinton, J.N., Surridge, B., Stoate, C., Keeping agricultural soil out of rivers: Evidence of sediment and nutrient accumulation within field wetlands in the UK. J. Environ. Manage., 135, 54–62, 2014, doi: 10.1016/j.jenvman.2014.01.015.

      Oon, Y.L., Ong, S.A., Ho, L.N., Wong, Y.S., Dahalan, F.A., Oon, Y.S., Lehl, H.K., Thung, W.E., Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour. Technol., 203, 190–197, 2016, doi: 10.1016/j.biortech.2015.12.011.

      Oswald, W.J., Ponds in the 21st Century. Water Sci. Technol., 31, 12, 1–8, 1995, doi: 10.1016/0273-1223(95)00487-8.

      Pálfy, T., Gourdon, R., Meyer, D., Stéphane, T., Molle, P., Model-based optimization of constructed wetlands treating combined sewer overflow. Ecol. Engin., 101, 261–267, 2017, doi: j.ecoleng.2017.01.020.

      Pálfy, T., Molle, P., Langergraber, G., Stéphane, T., Gourdon, R., Meyer, D., Simulation of constructed wetlands treating combined sewer overflow using HYDRUS/CW2D. Ecol. Engin., 87, 340–347, 2016, doi: j.ecoleng.2015.11.048.

      Palma, E., Daghio, M., Franzetti, A., Papini, M.P., Aulenta, F., The bioelectric well: a novel approach for insitu treatment of hydrocarbon-contaminated groundwater. Microb. Biotechnol., 11, 1, 112–118, 2018, doi: 10.1111/1751-7915.12760.

      Pavlineri, N., Skoulikidis, N.T., Tsihrintzis, V.A., Constructed floating wetlands: A review of research, design, operation and management aspects, and data meta-analysis. Chem. Eng. J., 308, 1120–1132, 2017, doi: 10.1016/j. cej.2016.09.140.

      Peeters, E.T.H.M., van Zuidam, J.P., van Zuidam, B.G., Van Nes, E.H., Kosten, S., Heuts, P.G.M., Roijackers, R.M.M., Netten, J.J.C., Scheffer, M., Changing weather conditions and floating plants in temperate drainage ditches. J. Appl. Ecol., 50, 3, 585–593, 2013, doi: 10.1111/1365-2664.12066.

      Peyrard, D., Delmotte, S., Sauvage, S., Namour, P., Gerino, M., Vervier, P., Sanchez-Perez, J.M., Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: A combined modelling and field study. Phys. Chem. Earth, 36, 12, 599–611, 2011, doi: 10.1016/j.pce.2011.05.003.

      Pi, N., Ng, J.Z., Kelly, B.C., Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and. Eichhornia crassipes. Sci. Total Environ., 601, 812–820, 2017, doi: 10.1016/j. scitotenv.2017.05.137.

      Polechonska, L., Klink, A., Dambiec, M., Trace element accumulation in Salvinia natans from areas of various land use types. Environ. Sci. Pollut. Res., 26, 29, 30242–30251, 2019, doi: 10.1007/s11356-019-06189-5.

      Polechonska, L., Klink, A., Dambiec, M., Rudecki, A., Evaluation of Ceratophyllum demersum as the accumulative bioindicator for trace metals. Ecol. Indic., 93, 274–281, 2018, doi: 10.1016/j.ecolind.2018.05.020.

      pole-zhi.org, La zone libellule : utiliser les zones humides pour, réduire les nouveaux polluants Association française des Etablissements Publics Territoriaux de Bassin (AFEPTB, Paris (France, 2013, http://www.pole-zhi.org/la-zonelibellule-utiliser-les-zones-humides-pour-reduire-les-nouveaux-polluants.

      Prajapati, M., van Bruggen, J.J.A., Dalu, T., Malla, R., Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for waste-water treatment. Appl. Water Sci., 7, 8, 4801–4809, 2017, doi: 10.1007/ s13201-017-0625-2.

      Prasad, M., Aquatic Plants for Phytotechnology, in: Environmental Bioremediation Technologies, Singh, S.N. , Tripathi, R.D. (Eds.), Springer, Berlin, Heidelberg, 2007, doi: 10.1007/978-3-540-34793-4_11.

      Prasetya, A., Prihutami, P., Warisaura, A.D., Fahrurrozi, M., Petrus, H., Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model. J. Environ. Chem. Eng., 8, 3, 8, 2020, doi: 10.1016/j.jece.2020.103781.

      Qu, X., Vavilin, V.A., Mazeas, L., Lemunier, M., Duquennoi, C., He, P.J., Bouchez, T., Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and nonaceticlastic methanogenesis. Waste Manage., 29, 6, 1828–1837, 2009, doi: 10.1016/j.wasman.2008.12.008.

      Quejigo, J.R., Domínguez-Garay, A., Dörfler, U., Schroll, R., Esteve-Núñez, A., Anodic shifting of the microbial community profile to enhance oxidative metabolism in soil. Soil Biol. Biochem., 116, 131–138, 2018, doi: 10.1016/j. soilbio.2017.09.012.

      Raskin, I., Kumar, P.B.A.N., Dushenkov, S., Salt, D.E., Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol., 5, 3, 285–290, 1994, doi: 10.1016/0958-1669(94)90030-2.

      Raven, J.A., Aquatic viruses: the emerging story. J. Mar. Biolog. Assoc. U.K., 86, 449–451, СКАЧАТЬ