Digital Dentistry. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Digital Dentistry - Группа авторов страница 20

Название: Digital Dentistry

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Медицина

Серия:

isbn: 9781119852018

isbn:

СКАЧАТЬ of periodontal defects: an in vitro study. BMC Oral Health 15: 64.

      3 3 Nasseh, I. and Al‐Rawi, W. (2018). Cone beam computed tomography. Dent. Clin. North Am. 62 (3): 361–391.

      4 4 Kolsuz, M.E., Bagis, N., Orhan, K. et al. (2015). Comparison of the influence of FOV sizes and different voxel resolutions for the assessment of periodontal defects. Dentomaxillofac. Radiol. 44 (7): 20150070.

      5 5 Grant, G.T., Campbell, S.D., Masri, R.M. et al. (2016). Glossary of digital dental terms: American College of Prosthodontists. J. Prosthodont. 25 (Suppl 2): S2–S9.

      6 6 Davidowitz, G. and Kotick, P.G. (2011). The use of CAD/CAM in dentistry. Dent. Clin. North Am. 55 (3): 559–570.

      7 7 Hung, K., Yeung, A.W.K., Tanaka, R., and Bornstein, M.M. (2020). Current applications, opportunities, and limitations of AI for 3D imaging in dental research and practice. Int. J. Environ. Res. Public Health 17 (12): 4424.

      8 8 Markarian, R.A., da Silva, R.L.B., Burgoa, S. et al. (2021). Clinical relevance of digital dentistry during COVID‐19 outbreak: a scoped review. Braz. J. Oral Sci. 19: e200201.

      9 9 No‐Cortes, J., Ayres, A.P., Lima, J.E. et al. (2021). Trueness, 3D deviation, time and cost comparisons between milled and 3D‐printed resin single crowns. Eur. J. Prosthodont. Restor. Dent. 29: 1–6.

      10 10 Coachman, C., Sesma, N., and Blatz, M.B. (2021). The complete digital workflow in interdisciplinary dentistry. Int. J. Esthet. Dent. 16: 1–18.

      11 11 Park, W.J. and Park, J.B. (2018). History and application of artificial neural networks in dentistry. Eur. J. Dent. 12: 594–601.

      12 12 Mupparapu, M., Wu, C.W., and Chen, Y.C. (2018). Artificial intelligence, machine learning, neural networks, and deep learning: futuristic concepts for new dental diagnosis. Quintessence Int. 49: 687–688.

      13 13 Naylor, C.D. (2018). On the prospects for a (deep) learning health care system. JAMA 320 (11): 1099–1100.

      14 14 Peng, J., Zeng, X., Townsend, J. et al. (2021). A machine learning approach to uncovering hidden utilization patterns of early childhood dental care among Medicaid‐insured children. Front. Public Health 8: 599187.

      15 15 Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Netw. 4 (2): 251–257.

      16 16 Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Proces. Syst. 25: 1–9.

      17 17 Tuzoff, D.V., Tuzova, L.N., Bornstein, M.M. et al. (2019). Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac. Radiol. 48 (4): 20180051.

      18 18 Lee, J.H., Kim, D.H., Jeong, S.N., and Choi, S.H. (2018). Diagnosis and prediction of periodontally compromised teeth using a deep learning‐based convolutional neural network algorithm. J. Periodontal Implant Sci. 48 (2): 114–123.

      19 19 Lee, J.H., Kim, D.H., Jeong, S.N., and Choi, S.H. (2018). Detection and diagnosis of dental caries using a deep learning‐based convolutional neural network algorithm. J. Dent. 77: 106–111.

      20 20 Ekert, T., Krois, J., Meinhold, L. et al. (2019). Deep learning for the radiographic detection of apical lesions. J. Endod. 45 (7): 917–922.

      21 21 Ariji, Y., Yanashita, Y., Kutsuna, S. et al. (2019). Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 128 (4): 424–430.

      22 22 Poedjiastoeti, W. and Suebnukarn, S. (2018). Application of convolutional neural network in the diagnosis of jaw tumors. Healthc Inform. Res. 24 (3): 236–241.

      23 23 Kositbowornchai, S., Plermkamon, S., and Tangkosol, T. (2013). Performance of an artificial neural network for vertical root fracture detection: an ex vivo study. Dent. Traumatol. 29 (2): 151–155.

      24 24 Murata, M., Ariji, Y., Ohashi, Y. et al. (2019). Deep‐learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 35 (3): 301–307.

      25 25 Heinrich, A., Güttler, F., Wendt, S. et al. (2018). Forensic odontology: automatic identification of persons comparing antemortem and postmortem panoramic radiographs using computer vision. Rofo 190 (12): 1152–1158.

      26 26 de Medeiros, F.C.F.L., Kudo, G.A.H., Leme, B.G. et al. (2018). Dental implants in patients with osteoporosis: a systematic review with meta‐analysis. Int. J. Oral Maxillofac. Surg. 47: 480–491.

      27 27 Kavitha, M.S., An, S.Y., An, C.H. et al. (2015). Texture analysis of mandibular cortical bone on digital dental panoramic radiographs for the diagnosis of osteoporosis in Korean women. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 119 (3): 346–356.

      28 28 Kavitha, M.S., Ganesh Kumar, P., Park, S.Y. et al. (2016). Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches. Dentomaxillofac. Radiol. 45 (7): 20160076.

      29 29 Tanny, L., Huang, B., Shaweesh, A., and Currie, G. (2021). Characterisation of anterior open bite in primary school‐aged children: a preliminary study with artificial neural network analysis. Int. J. Paediatr. Dent. 31 (5): 576–582.

      30 30 Auconi, P., Caldarelli, G., Scala, A. et al. (2011). A network approach to orthodontic diagnosis. Orthod. Craniofac. Res. 14 (4): 189–197.

      31 31 Kwak, G.H., Kwak, E.J., Song, J.M. et al. (2020). Automatic mandibular canal detection using a deep convolutional neural network. Sci. Rep. 10 (1): 5711.

      32 32 Xu, J., Liu, J., Zhang, D. et al. (2021). Automatic mandible segmentation from CT image using 3D fully convolutional neural network based on DenseASPP and attention gates. Int. J. Comput. Assist. Radiol. Surg. 16: 1785–1794.

      33 33 Kurt Bayrakdar, S., Orhan, K., Bayrakdar, I.S. et al. (2021). A deep learning approach for dental implant planning in cone‐beam computed tomography images. BMC Med. Imaging 21 (1): 86.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SQKUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAH СКАЧАТЬ