X-Ray Fluorescence in Biological Sciences. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу X-Ray Fluorescence in Biological Sciences - Группа авторов страница 33

Название: X-Ray Fluorescence in Biological Sciences

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9781119645580

isbn:

СКАЧАТЬ dispersive X‐ray fluorescence instrumentation in phytoremediation activities around metal mines. Appl. Spectrosc. 63: 1396–1402.

      27 27 Ramos, I., Pataco, I.M., Mourinho, M.P. et al. (2016). Elemental mapping of biofortified wheat grains using micro X‐ray fluorescence. Spectrochim. Acta Part B 120: 30–36.

      28 28 Fittschen, U.E.A., Kunz, H.H., Höhner, R. et al. (2017). A new micro X‐ray fluorescence spectrometer for in vivo elemental analysis in plants. X‐Ray Spectrom. 46: 374–381.

      29 29 Marguí, E., Queralt, I., and Van Grieken, R. (2016). Sample preparation for X‐ray fluorescence analysis. In: Encyclopedia of Analytical Chemistry (ed. R.A. Meyers). Wiley.

      30 30 Omote, J., Kohno, H., and Toda, K. (1995). X‐ray fluorescence analysis utilizing the fundamental parameter method for the determination of the elemental composition in plant samples. Anal. Chim. Acta 307: 117–126.

      31 31 Garivait, S., Quisefit, J.P., de Chateaubourg, P., and Malingre, G. (1997). Multi‐element analysis of plants by WDXRF using the scattered radiation correction method. X‐Ray Spectrom. 26: 257–264.

      32 32 Aslan, A., Budak, G., and Karabulut, A. (2004). The amounts Fe, Ba, Sr, K, Ca and Ti in some lichens growing in Erzurum province (Turkey). J. Quant. Spectrosc. Radiat. Transfer 88: 423–431.

      33 33 Mages, M., Óvári, M., Tümpling, W.V., and Kröpfl, K. (2004). Biofilms as bioindicator for polluted waters? Total reflection X‐ray fluorescence analysis of biofilms of the Tisza river (Hungary). Anal. Bioanal. Chem. 378: 1095–1101.

      34 34 Sabatini, S.E., Juárez, A.B., Eppis, M.R. et al. (2009). Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol. Environ. Saf. 72: 1200–1206.

      35 35 Bilo, F., Borgese, L., Dalipi, R. et al. (2017). Elemental analysis of tree leaves by total reflection X‐ray fluorescence: new approaches for air quality monitoring. Chemosphere 178: 504–512.

      36 36 Tsutsumimoto, K. and Tsuji, K. (2007). Time‐resolved X‐ray fluorescence for monitoring the intake of mineral nutrients in living plants. X‐ray Spectrom. 36: 324–327.

      37 37 Mera, M.F., Rubio, M., Pérez, C.A. et al. (2019). SR induced micro‐XRF for studying the spatial distribution of Pb in plants used for soil phytoremediation. Radiat. Phys. Chem. 154: 69–73.

      38 38 Akhter, F., Omelon, C., Gordon, R.A. et al. (2014). Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environ. Exp. Bot. 100: 10–19.

      39 39 Gonzalez‐Fernandez, O., Batista, M.J., Abreu, M.M. et al. (2011). Elemental characterization of edible plants and soils in abandoned mining region: assessment of environmental risk. X‐ray Spectrom. 40 (5): 353–363.

      40 40 Carvalho, M.L., Pimentel, A.C., and Fernandes, B. (2005). Study of heavy metals in wild edible mushrooms under different pollution conditions by X‐ray fluorescence spectrometry. Anal. Sci. 21: 747–750.

      41 41 Fourati, E., Vogel‐Mikus, K., Wali, M. et al. (2020). Nickel tolernace and toxicity mechanisms in the halophyte Sesuvium portulacastrum L. as revealed by Ni localization by and ligan environment studies. Environ. Sci. Pollut. Res. 27: 23402–23410.

      42 42 Özdemir, T., Apaydin, G., Mendil, D. et al. (2010). Determination of some elements in moss samples from Nort Eastern Anatolia, Turkey. Asian J. Chem. 22: 346–352.

      43 43 Pepponi, G., Lazzeri, P., Coghe, N. et al. (2004). Total reflection X‐ray fluorescence analysis of pollen as an indicator for atmospheric pollution. Spectrochim. Acta Part B 59: 1205–1209.

      44 44 Turner, A., Poon, H., Taylor, A., and Brown, M.T. (2017). In situ determination of trace elements in Fucus spp. by field‐portable‐XRF. Sci. Total Environ. 593‐594: 227–235.

      45 45 Dalipi, R., Marguí, E., Borgese, L., and Depero, L.E. (2017). Multi‐element analysis of vegetal foodstuff by means of low power total reflection X‐ray fluorescence (TXRF) spectrometry. Food Chem. 218: 348–355.

      46 46 Yigit, D., Akar, F., Baydas, E., and Buyukyldiz, M. (2010). Elemental composition of various mulberry species. Asian J. Chem. 22: 3554–3560.

      47 47 Williams, P.N., Lombi, E., Guo‐Xin Sun, O. et al. (2009). Selenium characterization in the global rice supply chain. Environ. Sci. Technol. 43: 6024–6030.

      48 48 Üstündag, Z. (2009). Polarized dispersive X‐ray fluorescence applications of spice samples. Spectrosc. Lett. 42: 7–11.

      49 49 Akamine, T., Otaka, A., Hokura, A. et al. (2010). Determination of trace elements in coffee beans by XRF spectrometer equipped with polarization optics and its application to identification of their production area. Bunseki Kagaku 59: 863–871.

      50 50 Queralt, I., Ovejero, M., Carvalho, M.L. et al. (2005). Quantitative determination of essential and trace element content of medicinal plants and their infusions by XRF and ICP techniques. X‐RaySpectrom. 34 (3): 213–217.

      51 51 Ercisli, S., Demir, F., Budak, G., and Karabulut, A. (2009). Determination of elemental variations in tea leaves (Camellia sinensis L) in different harvest time by WDXRF spectrometry. Asian J. Chem. 21: 1313–1317.

      52 52 Gupta, D., Chatterjee, J.M., Ghosh, R. et al. (2010). Radioisotope‐induced EDXRF investigation of elemental uptake in cauliflower grown at MSW‐contaminated sites. X‐Ray Spectrom. 39: 364–371.

      53 53 MarcóParra, L.M. (2011). Determination of total As in onion plants growing in contaminated substrates by total reflection X‐ray fluorescence. J. Radioanal. Nucl. Chem. 287: 479–484.

      54 54 Gunes, A., Kadioglu, Y.K., Pilbeam, D.J. et al. (2008). Influence of silicon on sunflower cultivars under drought stress, II: essential and nonessential elemental uptake determined by polarized energy dispersive X‐ray fluorescence. Commun. Soil Sci. Plant Anal. 39: 1904–1927.

      55 55 Akbaba, U., Sahin, Y., and Türkez, H. (2011). Comparison of element contents in hazelnuts grown under organic and conventional farming regimes for human nutrition and health. Fresen. Environ. Bull. 20: 1660–1665.

      56 56 Demir, K., Sahin, O., Kadioglu, Y.K. et al. (2010). Essential and non‐essential element composition of tomato plants fertilized with poultry manure. Sci. Hortic. 22: 16–22.

      57 57 Jiménez, S., Morales, F., Abadía, A. et al. (2009). Elemental 2‐D mapping and changes in leaf iron and chlorophyll in response to iron re‐supply in iron‐deficient GF 677 peach‐almond hybrid. Plant Soil 315: 93–106.

      58 58 Cardoso, P., Mateus, T.C., Velu, G. et al. (2018). Localization and distribution of Zn and Fe in grains of biofortified bread wheat lines through micro‐ and triaxial‐X‐Ray fluorescence spectrometry. Spectrochim. Acta Part B 141: 70–79.

       Anatoly G. Revenko and Darya S. Sharykina

       Institute of the Earth's Crust, SB RAS, Irkutsk, Russian Federation

      The histories of medicine and food are inextricably linked. For a long of time, nutrition was the only medicine for humans. At the present time, the results of food analysis are the main sources of information about СКАЧАТЬ