Fachbegriffe der Chemie. Michael Wächter
Чтение книги онлайн.

Читать онлайн книгу Fachbegriffe der Chemie - Michael Wächter страница 19

Название: Fachbegriffe der Chemie

Автор: Michael Wächter

Издательство: Bookwire

Жанр: Математика

Серия:

isbn: 9783754182901

isbn:

СКАЧАТЬ style="font-size:15px;">      2 Eine Kettenreaktion liegt vor, wenn im Reaktionsverlauf bei einer Teil- oder Elementarreaktion erneut die Ausgangsprodukte (Radikale) entstehen, so dass es zu einer ständigen Wiederholung der Reaktionen kommt. Verzweigungsreaktionen laufen ab, wenn im Verlaufe der Reaktion durch Verzweigungsreaktionen die Anzahl der Radikale zunimmt, so dass die Reaktionsgeschwindigkeit steigt.

      3 Die Arrhenius-Gleichung zeigt den Zusammenhang zwischen dem Geschwindigkeitskoeffizient k (Reaktionsgeschwindigkeitskonstante), der Aktivierungsenergie EA und der Temperatur T: k = A • e(-E(Akt) / R • T) (Arrhenius-Gleichung)bzw.: ln k = ln A – EA / R • 1/T

      Grundwissen zuElektrizität und Elektrochemie

      1 Die elektrische Stromstärke I entspricht der Ladungsmenge Q, die pro Zeit T fließt: I = Q / T . Sie wird in Ampère (Symbol: A) gemessen: 1 A = 1 C/s.

       Hinweise: Die Bewegung elektrischer Ladungen (der Fluss elektrischen Stromes) kommt durch das Bestreben eines Systems zustande, ein elektrisches Potenzial auszugleichen. Die Potenzialdifferenz ist als Spannung U messbar (Einheit: Volt, V). Die elektrische Arbeit W elektr . wird in Watt Sekunde angegeben (1 Ws = 1 J), die elektrische Leistung P= U I in Watt (1 W = 1 J/s).

      1 Der Widerstand R wird in der Einheit Ohm (Symbol: ) gemessen: R = U / I (1 Ohm = 1 Volt / Ampère).

       Hinweise:

       Der Kehrwert zum elektrischen Widerstand ist die elektrische Leitfähigkeit . Er wird als Leitfähigkeit L bezeichnet: 1 / R = L.

       Die spezifische Leitfähigkeit = l / ( R A ) in -1 cm -1 eines Materials ist der Kehrwert des spezifischen Widerstandes = R ( A / l ) in  cm, den ein Leiter dem Strom entgegensetzt: 1/ = . Als Äquivalentleitfähigkeit bezeichnet man den Quotienten aus der spezifischen Leitfähigkeit und der Konzentration c eines Elektrolyten: = c (Einheit: cm 2 mol -1  -1 ).

      1 Als Zellspannung U bezeichnet man die Spannung eines galvanischen Elementes im stromlosen Zustand.

       Hinweis: Die Anordnung: Metall A / Elektrolytlösung / Metall B wird „ Galvanisches Element “ genannt.

       Beispiel: Verbindet man in einem Galvanischen Element die beiden Metalle A und B (z.B. Kupfer- und Zink-Elektroden), so verwandelt das System chemische Energie in elektrische Energie um: Das unedlere Metall wird durch Elektronenüberschuss zum Minuspol (höherer Lösungsdruck), das edlere Metall zum Pluspol (Elektronenmangel).

chapter16Image1.jpeg

      1 Das elektrochemische Potenzial elektr.steht mit dem chemischen Potenzial in folgendem Zusammenhang: elektr. =  + z F 

      2 Die Standardelektrodenpotenziale E° beziehen sich auf galvanische Halbzellen unter Normalbedingungen ( = +25°C, p = 1013hPa, c = 1 mol/L bzw. Aktivität a = 1) in Kontakt mit der Normalwasserstoffelektrode.

      3 Die Standardzellspannung U° einer galvanischen Zelle ist gleich der Differenz zwischen dem Standardelektrodenpotenzial (Redoxpotenzial) der Katode (Pluspol) und dem der Anode (Minuspol): U° = E°(Pluspol, Katode) – E°(Minuspol, Anode).

      4 Die Anordnung der Metalle nach ihrem so gemessenen Redoxpotenzial wird als elektrochemische Spannungsreihe bezeichnet.

       Hinweis: Zu Redoxreaktionen vgl. Merksätze Nr. 88-90, zum Redoxpotenzial Merksätze Nr. 97ff, zur Elektrolyse Nr.101.

       Redoxpaare mit niedrigem Redoxpotenzial reagieren vorrangig unter Elektronenabgabe (Oxidation, gute Reduktionsmittel), Redoxpaare mit hohem Redoxpotenzial reagieren vorrangig unter Elektronenaufnahme (Reduktion, gute Oxidationsmittel).

      1 Zwei Galvani-Halbzellen mit gleichen Elektroden und Elektrolytlösungen, aber unterschiedlicher Konzentration, bezeichnet man als Konzentrationszellen. Diese bauen pro Zehnerpotenz Konzentrationsunterschied im Falle einwertiger Ionen etwa 58 mV Spannung auf.

      2 Die Nernst’sche Gleichung gibt an, wie Elektrodenpotenziale E aus Standardelektrodenpotenzialen E° und der Elektrolytkonzentration c (Mez+) berechnet werden kann:

      E = E° + (RT) / (zF) ln c (Mez+) und bei +25°C: E = E° + (0,059V) / (z) lg c (Mez+)bzw.: U(Me/Mez+c= x mol/L) = U° (Me/Mez+c= 1 mol/L) + 0,059V /z lg c(Mez+)

       Hinweis: Die üblichen Symbole sind hier:

       U°= Standardpotenzial zur NWE (auch: E°) Ox = oxidierte Form, Red = reduzierte Form R = allg. Gaskonstante 8,314 J/K mol T = Temperatur (in Kelvin) z = Anzahl ausgetauschter Elektronen pro Formelumsatz F = Faraday-Constante 96500 C/mol (Es gilt auch: R G = -U z F) ln = natürl. Logarithmus (ln x = 2,303 lg x)

       Die Nernst’sche Gleichung kann alternativ auch vom chemischen Potenzial hergeleitet und mit den elektrischen Potenzialen formuliert werden, z. B. für ein Redoxpaar Red/Ox mit: Red Ox + e . Hier ist: (Red) = (Ox) + e  e und die Differenz der elektrischen Potenziale ist dann:  =  0 + (R T) / ( e F)  ln c (Ox)/c(Red)

      1 Eine Ladungsmenge von gerundet 96500 C kann ein Mol eines einwertigen Stoffes abscheiden. DieseFaraday-Konstante ist der Quotient aus der Ladungsmenge Qund der Stoffmenge nin mol: 1 F = Q / n = NA • e ≈ 96500 C/mol.

      2 Akkumulatoren СКАЧАТЬ