Handbook of Aggregation-Induced Emission, Volume 2. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Handbook of Aggregation-Induced Emission, Volume 2 - Группа авторов страница 46

Название: Handbook of Aggregation-Induced Emission, Volume 2

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9781119642961

isbn:

СКАЧАТЬ Photographs of 54 under UV illumination at 365 nm in THF solution, water, and powder from left to right, respectively. Insertion was the molecular structure of 54. (h) N⋯π interaction of 54.

      Source: Reprinted from Ref. [71] (Copyright 2012 Royal Society of Chemistry).

Image described by caption.

      Source: Reprinted from Ref. [72] (Copyright 2015 John Wiley and Sons).

      (d) Proposed mechanism for the color change of 67 upon UV irradiation. (e) Generating different patterns on the same film of 67. (f) The thermal fading kinetics of 67 at different temperatures. (g) The dotted lines are the fluorescence intensity of 67 at 545 nm before and after excess UV light irradiation. The scatterplot is the fluorescence intensity of UV‐irradiated 67 at 545 nm exposed in light with different wavelengths for one minute.

      Source: Reprinted with permission from Ref. [73] (Copyright 2017 Royal Society of Chemistry).

Image described by caption.

      Source: Reprinted from Ref. [74] (Copyright 2013 American Chemical Society).

      (d) Molecular structure of 69. (e) Photographs of polymorphous single crystals of 69 (69(G), 69 (YG), and 69(Y)). (f) Schematic illustration of the relationship between slip‐stacking modes and an emission wavelength of 69. (g) Reversible vapor‐ and thermo‐responsive fluorescence printing and erasing by using 69.

      Source: Reprinted from Ref. [75] (Copyright 2015 John Wiley and Sons).

      By introducing rotary benzene rings into the symmetric positions of salicylaldehyde azine to increase the conformational flexibility thus achieving thermochromic switch provides a new idea for the design of stimulus‐responsive AIE materials. Based on this design principle, Tong's group modified 68 with long alkyl chains and reported the single crystals of 69 exhibiting three different fluorescence colors (Figure 3.28e), which also showed reversible stimuli‐responsive fluorescence switching (Figure 3.28d) [75]. X‐ray crystal structure analysis shows that the great differences existed in the molecular conformation and arrangement of the three crystals due to the presence of long alkyl chains, especially the small interplanar spacing of 69 (Y) with intermolecular p–p interactions, which resulted in a red‐shift in emission wavelength (Figure 3.28f). In addition, under the solvent fumigation of dichloromethane, the yellow form of 69 (Y) changed to its green form 69 (G) due to the molecular rearrangement from relatively close interplanar spacing and intermolecular p–p interaction therein to “monomer”‐like packing evidenced by DSC, polarized light microscopy, and PXRD. Annealing operations recovered an orange fluorescence from the green form with molecular arrangements similar to “dimers” (Figure 3.28f). Such reversibly stimuli‐responsive characteristics of molecule 69 were further applied to fluorescence printing and erasing in response to organic vapor and thermal stimuli (Figure 3.28g).