Handbook of Aggregation-Induced Emission, Volume 2. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Handbook of Aggregation-Induced Emission, Volume 2 - Группа авторов страница 36

Название: Handbook of Aggregation-Induced Emission, Volume 2

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9781119642961

isbn:

СКАЧАТЬ Lu, H.G., Xu, B., Dong, Y.J. et al. (2010). Novel fluorescent pH sensors and a biological probe based on anthracene derivatives with aggregation‐induced emission characteristics. Langmuir 26 (9): 6838–6844.

      93 93 Zhang, S., Ma, L., Ma, K. et al. (2018). Label‐free aptamer‐based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide. Acs Omega 3 (10): 12886–12892.

      94 94 Li, X., Ma, K., Lu, H.G. et al. (2014). Highly sensitive determination of ssDNA and real‐time sensing of nuclease activity and inhibition based on the controlled self‐assembly of a 9,10‐distyrylanthracene probe. Analytical and Bioanalytical Chemistry 406 (3): 851–858.

      95 95 Wang, H., Ma, K., Xu, B. et al. (2016). Tunable supramolecular interactions of aggregation‐induced emission probe and graphene oxide with biomolecules: An approach toward ultrasensitive label‐free and “turn‐on” DNA sensing. Small 12 (47): 6613–6622.

      96 96 Ma, K., Wang, H., Li, H. et al. (2017). Label‐free detection for SNP using AIE probes and carbon nanotubes. Sensors and Actuators B—Chemical 253: 92–96.

      97 97 Wang, Z.L., Ma, K., Xu, B. et al. (2013). A highly sensitive “turn‐on” fluorescent probe for bovine serum albumin protein detection and quantification based on AIE‐active distyrylanthracene derivative. Science China—Chemistry 56 (9): 1234–1238.

      98 98 Sun, B.J., Yang, X.J., Ma, L. et al. (2013). Design and application of anthracene derivative with aggregation‐induced emission charateristics for visualization and monitoring of erythropoietin unfolding. Langmuir 29 (6): 1956–1962.

      99 99 Ma, K., Wang, H., Li, H.L. et al. (2016). A label‐free aptasensor for turn‐on fluorescent detection of ATP based on AIE‐active probe and water‐soluble carbon nanotubes. Sensors and Actuators B—Chemical 230: 556–558.

       Yue Zheng and Aijun Tong

       Department of Chemistry, Tsinghua University, Beijing, China

       3.1.1 AIE and ESIPT of Salicylaldehyde Schiff Base

      Distinct from most AIEgens, SSBs are widely followed and studied because the unique molecular structure renders the AIE process often accompanied by excited‐state intramolecular proton transfer (ESIPT) procedure. ESIPT refers to a phototautomerization process by which organic molecules undergo a proton transfer via intramolecular hydrogen bonding between adjacent proton donors and acceptors in the excited state after light irradiation [3]. Such a procedure always proceeds extremely fast at a subpicosecond time scale. Because molecules with ESIPT properties always have large Stokes shifts, they can effectively avoid the self‐absorption or the internal filtering effects of fluorescence and therefore have wide applications in designing or constructing molecular probes and luminescent materials [4]. ESIPT process is easily affected by the environment (temperature, pressure, polarity, viscosity, and acidity, etc.); its application in the field of fluorescent sensors has thus attracted widespread attention.

Schematic illustration of intramolecular rotation and excited-state intramolecular proton transfer (ESIPT) of two typical salicylaldehyde Schiff base (SSB) derivatives. Schematic illustration of the ESIPT process of SSB derivatives.

      Source: Reprinted from Ref. [6] (Copyright 2015 American Chemical Society).

       3.1.2 Universal Design of SSB‐based AIEgens

      The current generic SSB AIEgens are designed in two ways. As mentioned above, the key factor for SSB derivatives to generate aggregation‐induced fluorescence is the intramolecular hydrogen bonding that helps the entire molecule to rotate around the nitrogen–nitrogen or carbon–nitrogen single bond and ensure the AIE and ESIPT processes. Therefore, the protection and deprotection of hydroxyl groups enable the design and synthesis of most SSB‐based AIE probes and stimuli‐responsive materials. Substitution of protons on the hydroxyl group into specific recognition groups by chemical modifications, the probe can achieve fluorescence “off–on” switch after interaction with an analyte.

      Another characteristic property of SSB is the coordination ability with metal ions. The nitrogen atom on the imine structure and the oxygen atom on the hydroxyl group are affluent in lone‐pair electrons, and the spatial conformation is close in size to that of metal ions such as copper(II) and zinc(II). Coordination with metal ions results in quenching or enhancement of fluorescence, depending on the nature of metal ions. This is also one common design approach for the SSB fluorescent probes. For metal ions or other analytes that СКАЧАТЬ