Против богов. Укрощение риска. Питер Бернстайн
Чтение книги онлайн.

Читать онлайн книгу Против богов. Укрощение риска - Питер Бернстайн страница 26

СКАЧАТЬ именно от Паскаля мы узнаём об интуитивном понимании вероятности, которым обладал де Мере. Играя, он ставил вновь и вновь на комбинации, приносившие ему небольшие выигрыши, которые его противники считали чисто случайными. Согласно Паскалю, он знал, что если метнуть одну кость четыре раза, то вероятность увидеть шестерку превысит 50 %, а точнее – 51,77469136 %. Его стратегия заключалась в том, чтобы выигрывать помалу при большом числе бросков, избегая делать редкие крупные ставки. Эта стратегия требовала много денег, потому что шестерка могла довольно долго не выпадать и приходилось удлинять серию бросков, дожидаясь, пока средний процент появления шестерки превысит 50 % 9.

      Де Мере пытался варьировать свою систему, ставя на то, что sonnez, или дубль-шесть, в 24 бросках двух костей должен выпадать с вероятностью, большей 50 %. На этом он потерял довольно много денег, пока не выяснилось, что эта вероятность при 24 бросках составляет только 49,14 %. Если бы он ставил на 25 бросков, при которых вероятность дубль-шесть составляет 50,55 %, он мог бы разбогатеть. История освоения стратегии риска окрашена не только в красный цвет, но и в черный.

      До встречи с Паскалем шевалье неоднократно обсуждал со многими французскими математиками задачу об очках – как два игрока в balla должны разделить банк в случае прекращения неоконченной игры, однако никто не смог дать ему вразумительный ответ.

      Хотя эта задача заинтересовала Паскаля, он не захотел решать ее самостоятельно. В наши дни такая проблема стала бы темой обсуждения для группы специалистов на ежегодном семинаре одного из научных обществ. Во времена Паскаля такой форум был невозможен. В лучшем случае небольшая компания ученых могла обсудить проблему в интимной обстановке гостиной аббата Мерсенна, но обычно в таких ситуациях прибегали к личной переписке с другими математиками, которые могли подсказать что-либо полезное для решения задачи. В 1654 году Паскаль обратился к Пьеру де Каркави, члену кружка аббата Мерсенна, который свел его с тулузским адвокатом Пьером де Ферма.

      Вряд ли Паскаль мог найти лучшего партнера для решения этой задачи. Ферма был феноменально образованным человеком10. Он говорил на всех основных европейских языках, на некоторых из них даже писал стихи и составлял обширные комментарии к греческим и римским авторам. Кроме того, он обладал редкостным талантом математика. Независимо от Декарта он изобрел аналитическую геометрию, внес большой вклад в раннее развитие численных методов, проводил исследования, направленные на определение веса Земли, изучал оптические явления, в частности рефракцию световых волн. В ходе оказавшейся весьма продолжительной переписки с Паскалем он внес значительный вклад в теорию вероятностей.

      Но коронные достижения Ферма относятся к теории чисел – анализу структурных соотношений каждого числа с остальными. Эти соотношения порождают бесчисленные головоломки, некоторые из которых не нашли решения и по сей день. Греки, например, обнаружили то, что они назвали совершенными числами, – это числа, СКАЧАТЬ