Название: Против богов. Укрощение риска
Автор: Питер Бернстайн
Жанр: Управление, подбор персонала
isbn: 978-5-9693-0143-6
isbn:
Фридрих не терпел никакого противодействия. В отличие от своего деда Фридриха Барбароссы, который был унижен папой в битве при Легнано в 1176 году, этот Фридрих, кажется, получал удовольствие от нескончаемых столкновений с папством. Его непреклонность принесла ему даже не одно, а два отлучения. Во втором случае папа Григорий IX объявил Фридриха лишенным императорской короны, назвав его еретиком, распутником и Антихристом. Фридрих ответил жестоким нападением на владения папы, а тем временем его флот задержал большую делегацию прелатов, направлявшихся в Рим для участия в соборе, который должен был лишить его императорской короны.
Фридрих окружил себя ведущими интеллектуалами своего времени, пригласив многих из них к себе в Палермо. Он построил на Сицилии несколько великолепнейших замков и в 1224 году основал университет для подготовки государственных служащих – первый европейский университет, получивший устав от монарха.
Фридрих был в восхищении от книги Фибоначчи. Как-то в 1220-х годах во время визита в Пизу он пожелал его увидеть. На аудиенции Фибоначчи решал алгебраические задачи, в том числе кубические уравнения, поочередно предлагаемые ему одним из многих придворных ученых. Это побудило его написать еще одну книгу – «Liber Quadratorum», или «Книгу о квадратах», которую он посвятил императору.
Фибоначчи широко известен благодаря короткому отрывку из «Liber Abaci», содержание которого производит впечатление математического чуда. В отрывке обсуждается задача о том, сколько кроликов родится в течение года от одной пары кроликов в предположении, что каждый месяц каждая пара рождает другую пару и что кролики начинают рожать с двухмесячного возраста. Фибоначчи доказывает, что в этом случае потомство исходной пары к концу года достигнет 233 пар.
Дальше он утверждает нечто еще более интересное. Предположим, что первая пара кроликов не будет размножаться до второго месяца. К четвертому месяцу начнут размножаться их первые двое отпрысков. Коль скоро процесс продолжится, числа пар в конце каждого месяца будут такими: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Здесь каждое последующее число является суммой двух предыдущих. Если кролики продолжат в том же духе в течение ста месяцев, число пар достигнет 354 224 848 179 261 915 075.
Этим не исчерпываются изумительные свойства чисел Фибоначчи. Разделим каждое из них на следующее за ним. Начиная с 3, будем получать 0,625. После 89 ответ будет 0,618; с увеличением чисел в ответе будет возрастать лишь число десятичных знаков после запятой[9]. Разделим теперь каждое число, начиная с 2, на предыдущее. Будем получать 1,6. После 144 ответ будет всегда 1,618.
Греки знали это соотношение и называли его золотой пропорцией. Эта величина определяет пропорции Пантеона, игральных карт и кредитных карточек и здания Генеральной Ассамблеи Организации Объединенных Наций в Нью-Йорке. Горизонтальная перекладина большинства христианских крестов делит вертикальную в том же отношении: длина над перекладиной СКАЧАТЬ
9
Одним из удивительных свойств этих чисел является то. что число 0,618 получается, если извлечь квадратный корень из 5, который равен 2,24, вычесть 1 и затем разделить на 2; это алгебраическое выражение входит в формулу, представляющую числа Фибоначчи.