Systems Biogeochemistry of Major Marine Biomes. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Systems Biogeochemistry of Major Marine Biomes - Группа авторов страница 45

Название: Systems Biogeochemistry of Major Marine Biomes

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119554363

isbn:

СКАЧАТЬ style="font-size:15px;">      92 Mehta, T., Coppi, M.V., Childers, S.E. et al. (2005). Outer membrane c‐type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Applied and Environmental Microbiology 71 (12): 8634–8641. doi:10.1128/AEM.71.12.8634–8641.2005

      93 Meister, P., Bernasconi, S.M., Aiello, I.W., Vasconcelos, C., McKenzie, J.A. (2009). Depth and controls of Ca‐rhodochrosite precipitation in bioturbated sediments of the Eastern Equatorial Pacific, ODP Leg 201, Site 1226 and DSDP Leg 68, Site 503. Sedimentology56: 1552–1568. https://doi.org/10.1111/j.1365‐3091.2008.01046.x

      94 Meister, P., Chapligin, B., Picard, A. et al. (2014). Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific. Geochimica et Cosmochimica Acta 137: 188–207. https://doi.org/10.1016/j.gca.2014.03.035

      95 Meister, P., Brunner, B., Picard, A. et al. (2019). Sulphur and carbon isotopes as tracers of past sub‐seafloor microbial activity. Nature Scientific Reports 9 (1): 604. https://doi.org/10.1038/s41598–018–36943–7.

      96 Meitl, L.A., Eggleston, C.M., Colberg, P.J.S. et al. (2009). Electrochemical interaction of Shewanella oneidensis MR‐1 and its outer membrane cytochromes OmcA and MtrC. Geochimica et Cosmochimica Acta 73 (18): 5292–5307. https://doi:10.106/j.gca.2009.06.021

      97 Mills, H.J., Reese, B.K., Shepard, A.K. et al. (2012). Characterization of metabolically active bacterial populations in subseafloor Nankai Trough sediments above, within and below the sulfate‐methane transition zone. Frontiers in Microbiology 3: 113. https://doi:10.3389/fmicb.2012.00113

      98 Nielsen, L.P., Peterson, N.R., Fossing, H. et al. (2010). Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature Letters 463 (7284): 1071–1074. https://doi.org/10.1038/nature08790

      99 Oni, O., Miyatake, T., Kasten, S., Richter‐Heitmann, T.et al. (2015). Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Frontiers in Microbiology 6: 365. https://doi.org/10.3389/fmicb.2015.00365

      100 Otero, F.J., Chan, C.H. and Bond, D.R. (2018). Identification of different putative outer membrane electron conduits necessary for Fe(III) citrate, Fe(III) oxide, Mn(IV) oxide, or electrode reduction by Geobacter sulfurreducens. Journal of Bacteriology 200 (19): e00347–18. doi:10.1128/JB.00347–18

      101 Otte, S., Kuenen, J.G., Nielsen, L.P. et al. (1999). Nitrogen, carbon and sulfur metabolism in natural Thioploca samples. Environmental Microbiology 65 (7): 3148–3157.

      102 Otte, J.M., Harter, J., Laufer, K. et al. (2018) The distribution of active iron‐cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environmental Microbiology 20: 2483–2499. https://doi.org/10.1111/1462–2920.14260

      103 Otwell, A.E., Callister, S.J., Zink, E.M. et al. (2016). Comparative proteomic analysis of Desulfotomaculum reducens MI‐1: insights into the metabolic versatility of a gram‐positive sulfate and metal‐reducing bacterium. Frontiers in Microbiology 7: 191. https://doi.org/10.3389/fmicb.2016.00191

      104 Park, H.S., Kim, B.H., Kim, H.S. et al. (2001). A novel electrochemically active and Fe(III)‐reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6): 297–306. https://doi.org/10.1006/anae.2001.0399

      105 Parkhurst, D.L. and Appelo, C.A.J. (2013). Description of input and examples for PHREEQC version 3 – a computer program for speciation, batch‐reaction, one‐dimensional transport and inverse geochemical calculations. US Geological Survey, Techniques and Methods, book 6, A43, 497 p. Available at: https://pubs.usgs.gov/tm/06/a43/

      106 Pfeffer, C., Larsen, S., Song, J.et al. (2012). Filamentous bacteria transport electrons over centimeter distances. Proceedings of the National Academy of Sciences 491 (7423): 218–221. doi:10.1038/nature11586

      107 Picard, A., Testemale, D., Wagenknecht, L. et al. (2015). Iron reduction by the deep‐sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions. Frontiers in Microbiology 5: 796. https://doi.org/10.3389/fmicb.2014.00796

      108 Picard, A., Gartman, A. and Girguis, P.R. (2016). What do we really know about the role of microorganisms in iron sulfide mineral formation? Frontiers in Earth Sciences 4: 68. https://doi.org/10.3389/feart.2016.00068.

      109 Pirbadian, S., Barchinger, S.E., Leung, K.M.et al. (2014). Shewanella oneidensis MR‐1 nanowires are outer membrane and periplasmic extensions of the extacellular electron transport components. Proceedings of the National Academy of Sciences 111 (35): 12883–12888. https://doi.org/10.1073/pnas.1410551111

      110 Pley, U., Schipka, J., Gambacorta, A. et al. (1991). Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. Systematic and Applied Microbiology 14 (3): 245–253. https://doi.org/10.1016/S0723–2020(11)80376–0

      111 Powell, S.M., Bowman, J.P., Snape, I. et al. (2003). Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiology Ecology 45 (2): 135–45. https://doi.org/10.1016/S0168–6496(03)00135–1

      112 Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62 (2): 142–160. https://doi.org/10.1111/j.1574–6941.2007.00375.x

      113 Reguera, G. (2018). Biological electron transport goes the extra mile. Proceedings of the National Academy of Sciences 115 (22): 5632–5634. https://doi.org/10.1073/pnas.1806580115

      114 Reguera, G., McCarthy, K.D., Mehta, T. et al. (2005). Extracellular electron transfer via microbial nanowires. Nature 435 (7045): 1098–1101. doi:10.1038/nature03661

      115 Reyes, C., Qian, F., Zhan, A. et al. (2012). Characterization of axial and proximal histidine mutations of the decaheme cytochrome MtrA from Shewanella sp. str. ANA‐3 and implications for the electron transport system. Journal of Bacteriology 194 (21): 5840–5847. doi:10.1128/JB.00890–12

      116 Reyes, C., Dellwig, O., Dähnke, K. et al. (2016). Bacterial communities potentially involved in iron‐cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing. FEMS Microbiology Ecology 92 (14): fiw054. https://doi:10.1093/femsec/fiw054.

      117 Reyes, C., Schneider, D., Thürmer, A. et al. (2017). Potentially active iron, sulfur and sulfate reducing bacteria in Skagerrak and Bothnian Bay sediments. Geomicrobiology Journal 34(10): 840–850. https://doi.org/10.1080/01490451.2017.1281360

СКАЧАТЬ