Systems Biogeochemistry of Major Marine Biomes. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Systems Biogeochemistry of Major Marine Biomes - Группа авторов страница 20

Название: Systems Biogeochemistry of Major Marine Biomes

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119554363

isbn:

СКАЧАТЬ in the upwelling region off Central Peru. Continental Shelf Research 10 (4): 355–67. https://doi.org/10.1016/0278‐4343(90)90056‐R

      58 Froelich, P.N., Klinkhammer, G.P., Bender, M.L. andet al. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta 43: 1075–1090. https://doi.org/10.1016/0016‐7037(79)90095‐4

      59 Füssel, J., Lam, P., Lavik, G. andet al. (2012). Nitrite oxidation in the Namibian oxygen minimum zone. The ISME Journal 6 (6): 1200–1209. https://doi.org/10.1038/ismej.2011.178

      60 Galán, A., Molina, V., Thamdrup, B. et al. (2009). Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile. Deep Sea Research Part II: Topical Studies in Oceanography 56 (16): 1021–1031. https://doi.org/10.1016/j.dsr2.2008.09.016

      61 Garçon, V., Karstensen, J., Palacz, A. et al. (2019). Multidisciplinary observing in the world ocean’s oxygen minimum zone regions: from climate to fish – the VOICE Initiative. Frontiers in Marine Science 6:722. https://doi.org/10.3389/fmars.2019.00722

      62 Gooday, A.J., Bett, B.J., Escobar, E. et al. (2010). Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology 31 (1): 125–147. https://doi.org/10.1111/j.1439‐0485.2009.0034

      63 Gooday, A.J., Levin, L.A., da Silva, A.A. et al. (2009). Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep Sea Research Part II: Topical Studies in Oceanography 56 (6–7): 488–502. https://doi.org/10.1016/j.dsr2.2008.10.003

      64 Gutiérrez, D., Enríquez, E., Purca, S. et al. (2008). Oxygenation episodes on the continental shelf of central Peru: remote forcing and benthic ecosystem response. Progress in Oceanography 79 (2–4): 177–189. https://doi.org/10.1016/j.pocean.2008.10.025

      65 Habicht, K., Canfield, D.E. and Rethmeier, J. (1998). Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta 62: 2585–2595. https://doi.org/10.1016/S0016‐7037(98)00167‐7

      66 Hamersley, M.R., Lavik, G., Woebken, D. et al. (2007). Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography 52 (3): 923–933. https://doi.org/10.1016/S0016‐7037(98)00167‐7

      67 Hartnett, H.E. and Devol, A.H. (2003). The role of a strong oxygen deficient zone in the preservation and degradation of organic matter: a carbon budget for the continental margins of NW Mexico and Washington. Geochimica et Cosmochimica Acta 67 (2): 247–264. https://doi.org/10.1016/S0016‐7037 (02)01076‐1

      68 Hartnett, H.E., Keil, R.G., Hedges, J.I. et al. (1998). Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 2–4. https://doi.org/10.1038/35351

      69 Hawley, A.K., Nobu, M.K., Wright, J.J. et al. (2017). Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco‐thermodynamic gradients. Nature Communications 8 (1): 1–10. https://doi.org/10.1038/s41467‐017‐01376‐9

      70 Hedderich, R. and Whitman, W.B. (2006). Physiology and biochemistry of the methane‐producing Archaea. The Prokaryotes 2: 1050–1079. https://doi.org/10.1007/0‐387‐30742‐7_34

      71 Hedges, J.I. and Keil, R.G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49 (2–3): 81–115.https://doi.org/10.1016/0304‐4203 (95)00008‐F

      72 Heinrich, S.M. and Reeburgh, W.S. (1987). Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal 5: 191–237. https://doi.org/10.1080/01490458709385971

      73 Helly, J. and Levin, L.A. (2004). Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Research I 51: 1159–1168. https://doi.org/10.1016/j.dsr.2004.03.009

      74 Hong, W.L., Torres, M.E., Kim, J.H. et al. (2014). Towards quantifying the reaction network around the sulfate–methane‐transition‐zone in the Ulleung Basin, East Sea, with a kinetic modeling approach. Geochimica et Cosmochimica Acta 140: 127–141. https://doi.org/10.1016/j.gca.2014.05.032

      75 Hood, R.R., Wiggert, J.D. and Naqvi, S.W.A. (2009). Indian Ocean research: opportunities and challenges. Geophysical Monograph Series 185: 409–428. https://doi.org/10.1029/2007GM000714

      76 Hu, C.Y., Yang, T.F., Burr, G.S. et al. (2017). Biogeochemical cycles at the sulfate‐methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan. Journal of Asian Earth Sciences 149: 172–183. https://doi.org/10.1016/j.jseaes.2017.07.002

      77 Jessen, G.L., Lichtschlag, A., Ramette, A. et al. (2017). Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Science Advances 3 (2): e1601897. https://doi.org/10.1126/sciadv.1601897

      78 Jørgensen, B.B. and Kasten, S. (2006). Sulfur cycling and methane oxidation. In: Marine Geochemistry, 2e (eds H.D. Schulz and M. Zabel), 271–309. Berlin: Springer.

      79 Kalvelage, T., Lavik, G., Lam, P. et al. (2013). Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geosciences, 6 (3), 228–234. https://doi.org/10.1038/ngeo1739

      80 Knittel, K. and Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology 63: 311–334. https://doi.org/10.1146/annurev. micro.61.080706.093130

      81 Komada, T., Burdige, D.J., Li, H.L. et al. (2016). Organic matter cycling across the sulfate–methane transition zone of the Santa Barbara Basin, California Borderland. Geochimica et Cosmochimica Acta 176: 259–278. https://doi.org/10.1016/j.gca.2015.12.022

      82 Kraal, P., Slomp, C.P., Reed, D.C. et al. (2012). Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of СКАЧАТЬ