Название: High-Performance Materials from Bio-based Feedstocks
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Химия
isbn: 9781119655626
isbn:
8 8. Taherzadeh, M., Bolton, K., Wong, J., and Pandey, A. (2019). Sustainable Resource Recovery and Zero Waste Approaches. Elsevier.
9 9. Babu, R.P., O'connor, K., and Seeram, R. (2013). Current progress on bio‐based polymers and their future trends. Progress in Biomaterials 2 (1): 1–16.
10 10. Smith, E.L., Abbott, A.P., and Ryder, K.S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews 114 (21): 11060–11082.
11 11. Supanchaiyamat, N., Jetsrisuparb, K., Knijnenburg, J.T.N. et al. (2019). Lignin materials for adsorption: current trend, perspectives and opportunities. Bioresource Technology 272: 570–581.
12 12. Ragauskas, A.J., Williams, C.K., Davison, B.H. et al. (2006). The path forward for biofuels and biomaterials. Science 311 (5760): 484–489.
13 13. Hamad, K., Kaseem, M., Ayyoob, M. et al. (2018). Polylactic acid blends: the future of green, light and tough. Progress in Polymer Science 85: 83–127.
14 14. González‐García, P. (2018). Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews 82: 1393–1414.
15 15. Sim, D.H.H., Tan, I.A.W., Lim, L.L.P., and Hameed, B.H. (2021). Encapsulated biochar‐based sustained release fertilizer for precision agriculture: a review. Journal of Cleaner Production 303, 127018.
16 16. Xiong, X., Yu, I.K.M., Cao, L. et al. (2017). A review of biochar‐based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology 246: 254–270.
17 17. Thommes, M., Kaneko, K., Neimark, A.V. et al. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (9–10): 1051–1069.
18 18. Stein, A., Wang, Z., and Fierke, M.A. (2009). Functionalization of porous carbon materials with designed pore architecture. Advanced Materials 21 (3): 265–293.
19 19. Zhu, J., Yan, C., Zhang, X. et al. (2020). A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science 76: 100788.
20 20. Vassilev, S.V., Baxter, D., Andersen, L.K., and Vassileva, C.G. (2013). An overview of the composition and application of biomass ash. Part 1. Phase‐mineral and chemical composition and classification. Fuel 105: 40–76.
21 21. Zając, G., Szyszlak‐Bargłowicz, J., Gołębiowski, W., and Szczepanik, M. (2018). Chemical characteristics of biomass ashes. Energies 11 (11): 2885.
22 22. Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 53: 1468–1485.
23 23. Goutam, S., Omar, N., Van Den Bossche, P., and Van Mierlo, J. (2017). Review of nanotechnology for anode materials in batteries. In: Emerging Nanotechnologies in Rechargeable Energy Storage Systems (ed. L.M. Rodriguez‐Martinez and N. Omar), 45–82. Elsevier.
24 24. Thomas, B.S., Yang, J., Mo, K.H. et al. (2021). Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: a comprehensive review. Journal of Building Engineering 40: 1–12.
2 Bio‐based Carbon Materials for Catalysis
Chaiyan Chaiya and Sasiradee Jantasee
Department of Chemical Engineering and Materials, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
2.1 Introduction
Developments of inexpensive heterogeneous catalysts to replace conventional homogeneous catalysts for extensive applications are currently investigated by many research studies. Inorganic materials such as silica (SiO2), alumina (Al2O3), zirconia (ZrO2), titania (TiO2), magnesium oxide (MgO), zeolite, and clays have received much attention for their use in catalysis [1]. Carbon‐based catalysts are among the promising heterogeneous catalysts used in a wide range of applications, which can be derived from both inorganic and organic resources. These materials have high stability in several reaction media and highly versatile chemical and physical properties. A great number of attempts have been made to synthesize carbon‐based materials from various raw biomasses and biomass‐derived compounds such as agricultural products and residues, sugar derivatives, and non‐lignocellulosic materials [2, 3]. The bio‐based carbon materials have been applied as a catalyst or as catalyst support in processes involving biorefinery, hydrogenation, bio‐oil upgrading, and biomass conversions into chemicals, to name a few [4–9]. Benefits of these catalysts include their high stability and simple preparation from a low‐cost carbon source. Carbon‐based catalysts can be formed in diverse physical structures and their chemical properties can be easily tailored by modification and functionalization processes. The bio‐based carbon materials synthesized from biomass mostly present amorphous structures and several chemical functional groups depending on parameters such as the composition of the biomass resource, biomass conversion process and conditions, and modification technique. The effects of these parameters on the bio‐based carbon properties are reviewed in this chapter for their utilization in catalysis. This chapter also provides an overview of catalysis applications of the carbon‐based materials exclusively originated from biomass resources, especially the most commonly used bio‐based carbon materials that show superior performance in Figure 2.1.
2.2 Biomass Resources for Carbon Materials
Carbon materials are one of many constituent substances on Earth. Their structures depend on the raw materials, processes, and preparation conditions. The biomass resources that are transformed into carbon materials for their use in catalytic applications are discussed in this section.
Biomass is a natural material grown by solar energy and comprises the world’s natural resources such as plants, animals, vegetables, and animal waste or organic waste. Biomass can be classified into two main types as illustrated in Figure 2.2. First, lignocellulosic materials are found in wood from natural forests and agricultural residues. The chemical compositions of general lignocellulosic materials are displayed in Table 2.1. These structures are primarily derived from carbon (C), hydrogen (H), and oxygen (O) atoms. The proper thermal processes can convert lignocellulose into carbon‐based materials that possess strong structures, which are suitable as a catalyst or catalyst support. Lignin is the hardest fraction in biomass and requires a high temperature for destruction. Second, non‐lignocellulosic materials, which can be obtained from algae, animal manure, sewage sludge, and others, contain a distinct proportion of proteins and lipids instead of lignocellulose. The non‐lignocellulosic carbon material generally has low strength and a nonrigid structure. According to the literature review, carbon‐based materials can be derived from several methods depending on the applications. In catalysis, the carbon material can play two roles, namely as a catalyst and as catalyst support. The required strength and rigidity under various reaction conditions mean that such carbon materials are typically obtained from lignocellulosic biomass resources rather than non‐lignocellulosic ones.