Название: 3D Printing of Foods
Автор: C. Anandharamakrishnan
Издательство: John Wiley & Sons Limited
Жанр: Техническая литература
isbn: 9781119671800
isbn:
Figure 2.13 Steps involved in 3D bioprinting process.
Figure 2.14 Schematic representation of integration of 3D printing with plant cell culture technologies.
Source: From Park et al. (2020) / With permission of Elsevier.
2.8.2 Classification of Bioprinting
2.8.2.1 Extrusion‐Based Bioprinting
Extrusion‐based bioprinting also referred to as DIW is the most commonly used approach of 3D bioprinting due to its versatility and affordability (Sanz‐Garcia et al. 2020). The process involves the continuous extrusion of biofilaments at a micro‐scale level that is deposited over the material substrate thereby forming the desired 3D structure (Figure 2.15). The receiving substrate can be of either solid (culture dish), liquid (growth medium), or gel matrix (Ozbolat and Hospodiuk 2016). Various process parameters considered for extrusion‐based 3D bioprinting includes nozzle size, extrusion rate, extrusion pressure, movement speed, printing, temperature, and path interval. Based on the method of actuation used for dispensing of biomaterial, the system can be categorized as screw‐driven, piston‐driven, and pneumatic‐driven 3D bioprinting systems (Derakhshanfar et al. 2018). In addition, extrusion‐based 3D bioprinting is used for coaxial and multi‐material bioprinting based on the end use of the 3D printed scaffolds. Material properties like bio‐ink viscosity and substrate properties must be considered for the successful fabrication of 3D scaffolds (Ying et al. 2018).
Figure 2.15 Schematic diagram of 3D bioprinting.
2.8.2.2 Droplet‐Based Bioprinting
Instead of deposition of continuous biofilament, the droplet‐based bioprinting involves the ejection of independent and discrete droplets onto the substrate surface thereby forming a 3D structure. Compare to extrusion technology, droplet‐based bioprinting has a high throughput and produces a 3D structure with greater precision (Gudapati et al. 2016). Based on the principle of droplet formation, droplet‐based bioprinting can be categorized as inkjet bioprinting, laser‐assisted bioprinting, and electrohydrodynamic jetting (Gu et al. 2019). Further inkjet bioprinting has been subdivided into DoD inkjet bioprinting and continuous inkjet bioprinting. Similarly, laser‐assisted bioprinting is subdivided into laser guidance direct writing (LGDW) and laser‐induced forward transfer (LIFT).
2.8.2.3 Photocuring‐Based Bioprinting
Photocuring‐based bioprinting is based on the photopolymerization of light‐sensitive polymers for the fabrication of cell‐free scaffolds (Kousaalya 2020). Compared to other approaches of bioprinting, photocuring has a higher printing speed and greater printing resolution. Based on the scanning mode, photocuring‐based bioprinting can be further classified into SLA and DLP (Lim et al., 2020). In photocuring‐based bioprinting, there won’t be any problem of nozzle plugging and shear stress that would otherwise affect the cell viability.
2.9 Future Prospects and Challenges
3D printing is a print‐and‐eat technology that allows us to customize the food as per individual needs. The present chapter gives an overview of various food printing technologies. Each of them has its own advantages and disadvantages. The 3D printing of foods greatly depends on material properties and the type of binding mechanism employed. The selection of printing technology is decided by the material properties. Extrusion‐based 3D printing can be adapted for most of the food materials; however, its application is limited to high viscosity foods. Sintering‐based technologies best suits for the development of porous brittle 3D structures; however, they are limited with only a fewer range of powder materials. Binder jetting and ink‐jet printing are well known for the carving of 3D designs for surface decorations where the compatibility of the substrate with food ink is adequate. Compared to conventional processing, 3D printing converges the multi‐step processing into a single step. However, there are still many barriers in 3D printing that must be overcome for incorporating into a niche market of personalized foods. One major strength of 3D food printing is the conversion of our idea into a reality that allows us to deliver nutritious foods in desired shapes, colours, and forms. It is possible through the integration of 3D printing with digital gastronomy and culinary skills. However, for food applications, control over the process and product parameters without significant implications on end‐product quality are challenging. Food is a complex matrix with varied physiochemical properties that in turn behave differently with different printing technology. It is not an easy task to print food as not all the food materials are printable that require adequate processing to make them printable. This complexity involved in the optimization of 3D printing parameters must be addressed through the development of streamlined testing methods and protocols.
In view of sustainability, 3D printing allows for usage of lesser material resources with minimal material wastage. Further, 3D printing allows for the utilization of by‐products and waste streams of food industries such as fruits and vegetable peels, meat trimmings, and so on for the development of value‐added 3D printed foods. 3D food printing possesses both economic and environmental benefits that reduce the carbon footprints and overall product life cycle. As the need of the hour, the rising demand for the food shortage and animal protein demand can be encountered using 3D printing by adopting bioprinting principles in developing in‐vitro cultured artificial meats and meat analogues. Forecasting the future scale‐up operations, currently, 3D printing suffers from the limitation of lower print speed and less production rate. This can be overcome by adopting multi‐head printing systems. However, the extent of the feasibility of the adaption of multi‐heads to different food printing technologies remains under question. The use of multiple heads gradually complicates the coordination mechanism of movement arms and the integration of 3D printers with the microprocessor controlling unit. Hence, more research works on design components, accessories, software integration, and development are essential to bridge up the gap in reducing the difficulty involved with multi‐head print systems. Insights on design attributes would be useful for scaling up of process at an industrial level that results in higher operation speed and production rate. These features could gradually reduce the cost of operation as well as the price incurred with 3D printed foods.
With advancements in technology, 3D printing СКАЧАТЬ