Numerical Methods in Computational Finance. Daniel J. Duffy
Чтение книги онлайн.

Читать онлайн книгу Numerical Methods in Computational Finance - Daniel J. Duffy страница 35

СКАЧАТЬ

      Then the sequence left-brace phi Subscript n Baseline right-brace of successive approximations left-parenthesis n greater-than-or-equal-to 0 right-parenthesis converges (uniformly) in the interval bar t minus t 0 bar less-than-or-equal-to alpha to a solution phi left-parenthesis t right-parenthesis of (3.1) that satisfies the initial condition phi left-parenthesis t 0 right-parenthesis equals eta.

      We note that the IVP (3.1) can be written as an integral equation as follows:

      3.2.1 An Example

      We take a simple autonomous non-linear scalar ODE to show how to calculate Picard iterates:

      whose solution is given by:

y left-parenthesis t right-parenthesis equals StartFraction a Over 1 minus a left-parenthesis t minus t 0 right-parenthesis EndFraction period

      We now compute the Picard iterates (3.4) for this ODE in order to determine the values of t for which the ODE has a solution. For convenience, let us take a equals 1 comma t 0 equals 0. Some simple integration shows that:

      (3.7)StartLayout 1st Row 1st Column phi 1 left-parenthesis t right-parenthesis 2nd Column equals 1 2nd Row 1st Column phi 1 left-parenthesis t right-parenthesis 2nd Column equals 1 plus integral Subscript 0 Superscript t Baseline f left-parenthesis phi 0 right-parenthesis italic d t equals 1 plus t 3rd Row 1st Column phi 2 left-parenthesis t right-parenthesis 2nd Column equals 1 plus integral Subscript 0 Superscript t Baseline f left-parenthesis phi 1 right-parenthesis italic d t equals 1 plus t plus t squared plus t cubed slash 3 4th Row 1st Column phi 3 left-parenthesis t right-parenthesis 2nd Column equals 1 plus t plus t squared plus t cubed plus StartFraction 2 t Superscript 4 Baseline Over 3 EndFraction plus StartFraction t Superscript 5 Baseline Over 3 EndFraction plus StartFraction t Superscript 6 Baseline Over 9 EndFraction plus StartFraction t Superscript 7 Baseline Over 63 EndFraction period EndLayout

      We take some model ODEs for motivation.

      3.3.1 Bernoulli ODE

      The Bernoulli ODE is named after Jacob Bernoulli. It is special in the sense that it is a non-linear equation having an exact solution:

      (3.9)v prime plus left-parenthesis 1 minus n right-parenthesis upper P v equals left-parenthesis 1 minus n right-parenthesis upper Q period

      3.3.2 Riccati ODE

СКАЧАТЬ