Numerical Methods in Computational Finance. Daniel J. Duffy
Чтение книги онлайн.

Читать онлайн книгу Numerical Methods in Computational Finance - Daniel J. Duffy страница 16

СКАЧАТЬ period EndLayout"/>

      A simple example of use is:

      More challenging examples of composite functions are:

      1.3.1 Taylor's Theorem

      Taylor's theorem allows us to expand a function as a series involving higher-order derivatives of a function. We take the Cauchy form (with exact remainder):

       

      (1.10)

      and:

):

      We summarise some useful properties of the exponential function:

      1.3.2 Big O and Little o Notation

      For many applications we need a definition of the asymptotic behaviour of quantities such as functions and series; in particular we wish to find bounds on mathematical expressions and applications in computer science. To this end, we introduce the Landau symbols O and o.

      Definition 1.2 (O-Notation).

StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column StartLayout 1st Row 1st Column f left-parenthesis x right-parenthesis equals upper O left-parenthesis g left-parenthesis x right-parenthesis right-parenthesis a s x right-arrow infinity if there-exists upper M greater-than 0 comma 2nd Column there-exists x 0 s period t period EndLayout 2nd Row 1st Column Blank 2nd Column Blank 3rd Column StartAbsoluteValue f left-parenthesis x right-parenthesis EndAbsoluteValue less-than-or-equal-to upper M StartAbsoluteValue g left-parenthesis x right-parenthesis EndAbsoluteValue for x greater-than x 0 3rd Row 1st Column Blank 2nd Column Blank 3rd Column f left-parenthesis x right-parenthesis equals upper O left-parenthesis g left-parenthesis x right-parenthesis right-parenthesis a s x right-arrow a if StartAbsoluteValue f left-parenthesis x right-parenthesis EndAbsoluteValue less-than-or-equal-to upper M StartAbsoluteValue g left-parenthesis x right-parenthesis EndAbsoluteValue for StartAbsoluteValue x minus a EndAbsoluteValue less-than 
              <a href=СКАЧАТЬ