Probability. Robert P. Dobrow
Чтение книги онлайн.

Читать онлайн книгу Probability - Robert P. Dobrow страница 10

Название: Probability

Автор: Robert P. Dobrow

Издательство: John Wiley & Sons Limited

Жанр: Математика

Серия:

isbn: 9781119692416

isbn:

СКАЧАТЬ contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

       Library of Congress Cataloging-in-Publication Data

      Names: Wagaman, Amy Shepherd, 1982- author. | Dobrow, Robert P., author.

      Title: Probability : with applications and R / Amy S. Wagaman, Department of Mathematics and Statistics, Amherst College, Amherst, MA, Robert P. Dobrow, Department of Mathematics, Carleton College, Northfield, MN.

      Description: Second edition. | Hoboken, NJ : Wiley, [2021] | Includes bibliographical references and index.

      Identifiers: LCCN 2021007900 (print) | LCCN 2021007901 (ebook) | ISBN 9781119692386 (cloth) | ISBN 9781119692348 (adobe pdf) | ISBN 9781119692416 (epub)

      Subjects: LCSH: Probabilities–Data processing. | R (Computer program language)

      Classification: LCC QA276.45.R3 D63 2021 (print) | LCC QA276.45.R3 (ebook) | DDC 519.20285/5133–dc23

      LC record available at https://lccn.loc.gov/2021007900

      LC ebook record available at https://lccn.loc.gov/2021007901

      Cover Design: Wiley

      Cover Image: © D3Damon/Getty Images, NicoElNino/Shutterstock

       Amy: To my fantastic, supportive fiancé, Stephen,my beloved parents (rest in peace, Mom), and my Aunt Pat

       Bob: To my wonderful familyAngel, Joe, Danny, Tom

      Probability: With Applications and R is a probability textbook for undergraduates. The second edition contains modest changes from the first, including some reorganization of material. It assumes knowledge of differential and integral calculus (two semesters of calculus, rather than three semesters). Double integrals are introduced to work with joint distributions in the continuous case, with instruction in working with them provided in an appendix. While the material in this book stands on its own as a “terminal” course, it also prepares students planning to take upper level courses in statistics, stochastic processes, and actuarial sciences.

      There are several excellent probability textbooks available at the undergraduate level, and we are indebted to many, starting with the classic Introduction to Probability Theory and Its Applications by William Feller.

      Our approach is tailored to our students and based on the experience of teaching probability at a liberal arts college. Our students are not only math majors but come from disciplines throughout the natural and social sciences, especially biology, physics, computer science, and economics. Sometimes we will even get a philosophy, English, or arts history major. They tend to be sophomores and juniors. These students love to see connections with “real-life” problems, with applications that are “cool” and compelling. They are fairly computer literate. Their mathematical coursework may not be extensive, but they like problem solving and they respond well to the many games, simulations, paradoxes, and challenges that the subject offers.

      In addition to simulation, another emphasis of the book is on applications. We try to motivate the use of probability throughout the sciences and find examples from subjects as diverse as homelessness, genetics, meteorology, and cryptography. At the same time, the book does not forget its roots, and there are many classical chestnuts like the problem of points, Buffon's needle, coupon collecting, and Montmort's problem of coincidences. Within the context of the examples, when male and female are referred to (such as in the example on colorblindness affecting males more than females), we note that this refers to biological sex, not gender identity. As such, we use the term “sex” not “gender” in the text.

      Following is a synopsis of the book's 11 chapters.

       Chapter 1 begins with basics and general principles: random experiment, sample space, and event. Probability functions are defined and important properties derived. Counting, including the multiplication principle, permutations, and combinations (binomial coefficients) are introduced in the context of equally likely outcomes. A first look at simulation gives accessible examples of simulating several of the probability calculations from the chapter.

       Chapter СКАЧАТЬ