Название: Geophysical Monitoring for Geologic Carbon Storage
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: География
isbn: 9781119156840
isbn:
33 Vasco, D. W., Ferretti, A., & Novali, F. (2008). Estimating permeability from quasi‐static deformation: Temporal variations and arrival time inversion. Geophysics, 73, O37–O52. https://doi.org/10.1190/1.2978164
34 Vasco, D. W., Johnson, L. R., & Goldstein, N. E. (1988). Using surface deformation and strain to determine deformation at depth, with an application to Long Valley, Caldera, California. Journal of Geophysical Research, 93, 3232–3242.
35 Vasco, D. W., Karasaki, K., & Keers, H. (2000). Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Resources Research, 36, 3447–3465. http://dx.doi.org/10.1029/2004WR003272
36 Vasco, D. W., Rucci, A., Ferretti, A., Novali, F., Bissell, R. C., Ringrose, P. S., Mathieson, A. S., et al. (2010). Satellite‐based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophysical Research Letters, 37, L03303, 1–5. https://doi.org/10.1029/2009GL041544
37 Wang, R., Lorenzo‐Martin, F. & Roth, F. (2006). PSGRN/PSCMP: A new code for calculating co‐ and post‐seismic deformation, geoid and gravity changes based on the viscoelastic‐gravitational dislocation theory. Computers & Geosciences, 32, 527–541.
38 Worth, K., White, D., Chalaturnyk, R., Sorensen, J., Hawkes, C., Rostron, B., Johnson, J., et al. (2014). Aquistore project measurement, monitoring and verification: From concept to CO2 injection. Energy Procedia, 63, 3202–3208. https://doi.org/10.1016/j.egypro.2014.11.345
39 Wright, C. A. (1998). Tiltmeter fracture mapping: From the surface and now downhole. Petroleum Engineer International, 71, 50–63.
40 Zhang, R., Vasco, D. W., & Daley, T. M. (2016). Study of seismic diffraction wave caused by a fracture zone at the In Salah carbon dioxide storage project. International Journal of Greenhouse Gas Control, 42, 75–86. https://doi.org/10.1016/j.i.jggc.2015.07.033
41 Zhang, R., Vasco, D. W., Daley, T. M., & Harbert, W. (2015). Characterization of a fracture zone using seismic attributes at the In Salah CO2 storage project. Interpretation, May, SM37–SM46. https://doi.org/10.1190/INT‐2014‐0141.1
3 Surface Monitoring, Verification, and Accounting (MVA) for Geologic Sequestration Storage
Samuel Clegg1, Kristy Nowak-Lovato1, Robert Currier1, Julianna Fessenden2, and Ronald Martinez1
1 Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
2 Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
ABSTRACT
Geologic sequestration of carbon dioxide (CO2) is one of the immediate solutions to the permanent storage of greenhouse gases. Geologic storage of CO2 requires monitoring, verification, and accounting (MVA) to assess the location of the sequestered material as well as track the plume movement. Surface MVA techniques have been developed to detect CO2 emissions should some of the injected CO2 migrate to the surface. Most of these techniques involve monitoring absolute changes in bulk CO2 concentration, which is complicated by the diurnal cycle. Changes in the carbon stable isotope ratio in CO2 has been shown to be a more sensitive diagnostic to distinguish anthropogenic and natural CO2. Both cavity ringdown spectroscopy (CRS) and frequency modulated spectroscopy (FMS) are sensitive spectroscopic techniques that have been developed to measure these stable isotope ratios. While CRS is limited to analysis of point source emission samples, field experiments of FMS instruments have been demonstrated in both captured samples and in remote configurations. In this chapter, the application of FMS to the MVA of carbon dioxide is reviewed.
3.1. INTRODUCTION
Methods to limit greenhouse gas emissions in an effort to arrest global warming are necessary and geological sequestration is immediately available. Geological sequestration involves pumping CO2 into deep geological reservoirs such as depleted oil and natural gas reservoirs (Rodosta et al., 2014, Rodosta & Ackiewicz, 2014). Geological sequestration has the benefit of accommodating any source of CO2 including any industrial process where the CO2 is collected. The expectation is that the sequestered CO2 will become mineralized over time resulting in the permanent CO2 storage.
Monitoring, verification, and accounting (MVA) is a fundamental requirement for geological sequestration sites to ensure the permanent storage as well as ensure public health and environmental safety (Rodosta & Ackiewicz, 2014). In order to pay for sequestration, there is an interest in the development of a carbon economy where those that sequester CO2 would receive a financial gain. If a carbon economy is established, it is critical to verify that the CO2 is permanently stored. Furthermore, MVA methods are required to ensure that the CO2 or other hazardous gases within the reservoir are not mobilized beyond the reservoir into used water reservoirs or to the surface at dangerous concentrations.
Many MVA methods have been developed that have demonstrated many of the performance requirements in field tests. These MVA techniques must be capable of at least measuring the CO2 flux and these techniques would detect seepage as a change in concentration above ambient conditions. These fundamental measurements are complicated or compromised by the diurnal CO2 concentrations that raise the minimum detection limit. MVA techniques must also be capable of determining the location of the seepage at the surface. In collaboration with subsurface methods discussed in Part II of this volume, the pathway from the reservoir to the surface can be traced and the failure mechanism could be determined. Most critically, MVA techniques are required to identify the CO2 seepage pathway and mechanism before the seepage becomes a catastrophic failure.
There is also a desire to identify seepage at the surface at concentrations that are at or below ambient CO2 concentrations. Carbon stable isotope ratios enable one to distinguish the sequestered anthropogenic CO2 from ubiquitous natural emissions as depicted in Figure 3.1 (Fessenden et al., 2010). Anthropogenic CO2 has a carbon stable isotope signature (δ13CO2) that ranges from ~‐23 to ‐37% (or per mil or parts per thousand) from petroleum burning to ~‐40 to ‐46% from natural gas combustion. These isotopic signatures differ significantly from natural ~‐7% CO2 isotope ratios found in the atmosphere or other natural sources of CO2 depicted in Figure 3.1. Consequently, MVA techniques with stable isotope sensitivities have the capability of distinguishing CO2 seepage from natural emissions under ambient conditions and without the diurnal complications.
In this chapter, the current state‐of‐the‐art MVA techniques are outlined along with a brief description of the strengths and limitations. By far, most of the MVA techniques currently used to monitor sequestration sites do not exploit stable isotope СКАЧАТЬ