Physics I For Dummies. Steven Holzner
Чтение книги онлайн.

Читать онлайн книгу Physics I For Dummies - Steven Holzner страница 20

Название: Physics I For Dummies

Автор: Steven Holzner

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119872245

isbn:

СКАЧАТЬ rel="nofollow" href="#fb3_img_img_4a2a65e0-cbdc-5782-9915-2a8dc7abfcd5.png" alt="math"/>

      Your final speed was 0 mph, and your original speed was 75 mph, so plugging in the numbers here gives you this acceleration:

math

      In other words, –3.8 mph/s, not +3.8 mph/s — a big difference in terms of solving physics problems (and in terms of law enforcement). If you accelerated at +3.8 mph/s rather than –3.8 mph/s, you’d end up going 150 mph at the end of 20 seconds, not 0 mph. And that probably wouldn’t make the cop very happy.

      Now you have your acceleration. You can turn off your calculator and smile, saying, “Maybe I was going a little fast, officer, but I’m very law-abiding. Why, when I heard your siren, I accelerated at –3.8 mph/s just in order to pull over promptly.” The policeman pulls out his calculator and does some quick calculations. “Not bad,” he says, impressed. And you know you’re off the hook.

      Accounting for direction

      

The sign of the acceleration depends on direction. If you slow down to a complete stop in a car, for example, and your original velocity was positive and your final velocity was 0, then your acceleration is negative because a positive velocity came down to 0. However, if you slow down to a complete stop in a car and your original velocity was negative and your final velocity was 0, then your acceleration would be positive because a negative velocity increased to 0.

      Looking at positive and negative acceleration

      When you hear that acceleration is going on in an everyday setting, you typically think that means the speed is increasing. However, in physics, that isn’t always the case. An acceleration can cause speed to increase, decrease, and even stay the same!

      Here’s a simple example that shows how a simple constant acceleration can cause the speed to increase and decrease in the course of an object’s motion. Say you take a ball, throw it straight up in the air, and then catch it again. If you throw the ball upward with a speed of 9.8 m/s, the velocity has a magnitude of 9.8 m/s in the upward direction. Now the ball is under the influence of gravity, which, on the surface of the Earth, causes all free-falling objects to undergo a vertical acceleration of –9.8 m/s2. This acceleration is negative because its direction is vertically downward.

      With this acceleration, what’s the velocity of the ball after 1.0 second? Well, you know that

math

      Rearrange this equation and plug in the numbers, and you find that the final velocity after 1.0 second is 0 meters/second:

math

      After 1.0 second, the ball has zero velocity because it’s reached the top of its trajectory, just at the point where it’s about to fall back down again. So the acceleration has actually slowed down the ball because it was going in the direction opposite the velocity.

      Now see what happens as the ball falls back down to Earth. The ball has zero velocity, but the acceleration due to gravity accelerates the ball downward at a rate of –9.8 m/s2. As the ball falls, it gathers speed before you catch it. What’s its final velocity as you catch it, given that its initial velocity at the top of its trajectory is zero?

      The time for the ball to fall back down to you is just the same as the time it took to reach the top of its trajectory, which is 1.0 second, so you can find the final velocity for this part of the ball’s motion with this calculation:

math

      

When you work with physics problems, bear in mind that acceleration can speed up or slow down an object, depending on the direction of the acceleration and the velocity of the object. Don’t simply assume that just because something is accelerating its speed must be increasing. (By the way, if you want to see an example of how an acceleration can leave the speed of an object unchanged, take a look at the circular motion topic covered in Chapter 7.)

      Examining average and instantaneous acceleration

      Just as you can examine average and instantaneous speeds and velocities, you can also examine average and instantaneous acceleration. Average acceleration is the ratio of the change in velocity to the change in time. You calculate average acceleration, also written as math, by taking the final velocity, subtracting the initial velocity, and dividing the result by the total time (final time minus the initial time):

math

      

At any given point, the acceleration you measure is the instantaneous acceleration, and that number can be different from the average acceleration. For example, when you first see red flashing police lights behind you, you may jam on the brakes, which gives you a big acceleration, in the direction opposite to which you’re moving (in everyday parlance, you’d say you just decelerated, but that term’s a no-no in physics circles). But you ease up on the gas pedal a little and coast to a stop, so the acceleration is smaller. The average acceleration, however, is a single value, derived by dividing the overall change in velocity by the overall time.

      

Acceleration is the rate of change of velocity, not speed. If a velocity’s direction changes without a change in speed, this is also a kind of acceleration.

      Taking off: Putting the acceleration formula into practice

      Hmm, you think. Will an acceleration of 31 m/s2 over a distance of 100 meters do the trick? You take out your clipboard and ask yourself: How far must I be accelerated at 31 m/s2 to achieve a speed of 62 m/s?

      First think of the distance that you need to be accelerated over as the size of the displacement from your initial position. СКАЧАТЬ