Генезис. Небо и Земля. Том 1. История. Максим Филипповский
Чтение книги онлайн.

Читать онлайн книгу Генезис. Небо и Земля. Том 1. История - Максим Филипповский страница 53

СКАЧАТЬ смысл. Всякое истинно глубокое явление природы, например «жизнь», «атомный объект», «физическая система», не может быть определено однозначно с помощью слов нашего языка и требует для своего определения по крайней мере двух взаимоисключающих дополнительных понятий. Применение обобщённого принципа дополнительности со временем привело к созданию концепции дополнительности, охватывающей не только физику, но и биологию, психологию, культурологию, гуманитарное знание в целом.

      §255. К концу 1927 года была в общих чертах сформулирована Нильсом Бором и Вернером Гейзенбергом так называемая Копенгагенская интерпретация, основой которой стали вероятностная трактовка волновой функции Макса Борна, соотношения неопределённостей Гейзенберга и принцип дополнительности Бора. Копенгагенская интерпретация является выражением смысла квантовой механики, и остается одной из самых распространенных интерпретаций квантовой механики. Согласно Копенгагенской интерпретации, физические системы, как правило, не обладают определенными свойствами до измерения, и квантовая механика может только предсказать вероятности того, что измерения дадут определенные результаты169. Акт измерения влияет на систему, в результате чего набор вероятностей сводится только к одному из возможных значений сразу после измерения. Эта функция известна как коллапс волновой функции. В то же время нет окончательного исторического утверждения о том, что такое копенгагенская интерпретация. Существуют некоторые фундаментальные согласования и разногласия между взглядами Бора и Гейзенберга. Гейзенберг подчеркивал резкий «разрез» между наблюдателем (или инструментом) и наблюдаемой системой, в то время как Бор предложил интерпретацию, независимую от субъективного наблюдателя или измерения или коллапса, который опирается на «необратимый» или фактически необратимый процесс, который может иметь место в квантовой системе. Макс Борн (1927) тогда понял, что в теории Гейзенберга (1926) классические переменные положения и импульса вместо этого будут представлены матрицами, математическими объектами, которые могут быть умножены вместе, как числа с той разницей, что порядок умножения имеет значение. [537,538] Эрвин Шрёдингер представил уравнение, которое рассматривало электрон как волну, а Борн обнаружил, что способ успешной интерпретации волновой функции, появившейся в уравнении Шрёдингера, был инструментом для вычисления вероятностей. Впоследствии Ганс Примас (1981) описал девять тезисов или принципов копенгагенской интерпретации: квантовая физика применима к отдельным объектам, а не только к ансамблям объектов; их описание является вероятностным; их описание является результатом экспериментов, описанных в терминах классической (неквантовой) физики; «граница», отделяет классический от кванта, может быть выбрана произвольно; акт «наблюдения» или «измерения» необратим; СКАЧАТЬ



<p>169</p>

На протяжении многих лет высказывалось много возражений против Копенгагенского толкования. К ним относятся: разрывные скачки при наблюдении, вероятностный элемент, введенный при наблюдении, субъективность требования наблюдателя, трудность определения измерительного устройства и необходимость обращения к классической физике для описания «лаборатории», в которой измеряются результаты. Альтернативы Копенгагенской интерпретации включают интерпретацию многих миров, интерпретацию де Бройля—Бома (теория волны-пилота, механика Бома, интерпретация Дэвида Джозефа Бома и причинная интерпретация, является интерпретацией квантовой теории), квантовый Байесианизм и квантовые теории декогеренции.