φ – Число Бога. Золотое сечение – формула мироздания. Марио Ливио
Чтение книги онлайн.

Читать онлайн книгу φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио страница 17

СКАЧАТЬ двух целых чисел (а следовательно, это иррациональное число). Задумайтесь на минуту: сейчас мы докажем, что хотя в нашем распоряжении бесконечное множество целых чисел, но как бы мы ни искали, нам никогда не найти двух таких, чтобы их отношение точно равнялось √2! Это же просто поразительно!

      Вот как выглядит доказательство «от противного» в данном случае. Начнем мы с того, что предположим, что верно противоположное тому, что мы стремимся доказать, а именно предположим, что на самом деле √2 равен какому-то отношению двух целых чисел a и b, то есть √2 = a/b. Если у a и b есть общие делители, как, например, у 9 и 6 есть общий делитель 3, можно упростить эту дробь, разделив числитель и знаменатель на эти делители, пока мы не получим два числа p и q, у которых общих делителей уже нет. (В примере с 9 и 6 это превратит 9/6 в 3/2). Очевидно, что не может быть такого, чтобы и p, и q были четными (иначе у них был бы общий делитель 2). Следовательно, наше предположение состоит в том, что p/q = √2, причем p и q – числа, у которых нет общих делителей. Теперь возводим обе части равенства в квадрат и получаем p2/q2= 2. Далее умножаем обе части равенства на q2 и получаем p2 = 2 q2. Обратите внимание, что правая часть равенства, что совершенно очевидно, четное число, поскольку представляет собой какое-то число q2, умноженное на 2, а это всегда дает четное число. Поскольку p2 равно четному числу, p2 тоже четное число. Однако если квадрат числа – четное число, значит, и само это число тоже четное (напомню, что квадрат – это число, умноженное само на себя, а при умножении нечетного числа на себя результат будет нечетным). Таким образом, мы доказали, что число p – четное. Вспомним, что это значит, что q должно быть нечетным: ведь у p и q нет общих делителей. Однако если p четное число, значит, его можно записать в виде p = 2r, ведь у четного числа должен быть делитель 2. А следовательно, вышеуказанное уравнение p2 = 2 q2 можно записать в виде (2r)2 (мы просто заменили p на 2r), то есть поскольку (2r)2= (2r) × (2r)] 4r2 = 2 q2. Теперь разделим обе части равенства на 2 и получим 2r2 = q2. Однако из этого следует – по тем же логическим выкладкам, которые мы только что применяли, – что q2 – четное число (поскольку равно дважды повторенному другому числу), а следовательно, и q – тоже четное число. Однако отметим, что выше мы доказали, что q должно быть нечетным! Итак, мы пришли к очевидному логическому противоречию – доказали, что число должно быть и четным, и нечетным одновременно. Этот факт показывает, что наше первоначальное предположение – что существуют два целых числа p и q, отношение которых равно √2 – ложно, что и требовалось доказать. Числа вроде √2 – это новый вид чисел, иррациональные числа.

      Похожим способом можно доказать, что квадратный корень любого натурального числа, не являющегося полным квадратом (вроде 9 или 16), – иррациональное число. Числа вроде √3 и √5 – иррациональные.

      Невозможно переоценить значимость открытия несоизмеримости и иррациональных чисел. До этого открытия математики СКАЧАТЬ