HPLC optimal einsetzen. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу HPLC optimal einsetzen - Группа авторов страница 23

Название: HPLC optimal einsetzen

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527828524

isbn:

СКАЧАТЬ daher beschränkt sich dieses Kapitel auf die Aspekte, die in der LC-MS-Analytik besonders zu beachten sind oder eine andere Gewichtung erfahren müssen.

      Empfehlungen

       • Beim korrekten Skalieren von LC-Trennungen über verschiedene Säulendurchmesser entsteht bei konzentrationsempfindlichen Detektoren wie ESI-MS kein nennenswerter Empfindlichkeitsgewinn.

       • Für die meisten LC-MS-Trennungen sind Säuleninnendurchmesser von 2,1 mm ausreichend; selbst UHPLC-Phasenmaterialien von dp ≤ 2 μm können in aller Regel noch an oder nahe ihrem Effizienzoptimum betrieben werden.

       • Innendurchmesser von unter 2,1 mm sind nur in zwei Fällen unersetzlich, bei erheblich limitiertem Probenvolumen und/oder drastisch reduzierten Flussraten von unter 100µl/min. wegen technischer Randbedingungen wie dem Design der MS-Ionenquelle.

      Wie bei der Entwicklung und Optimierung einer konventionellen HPLC-Methode auch, stellt sich bei LC-MS-Methoden eingangs die Frage nach dem Ziel, das die Trennmethode mit MS-Detektion verfolgt. Je nach Anzahl der vorhandenen Probenbestandteile und der Güte der analytischen Information steht eine LC-MS-Trennung wie jede andere LC-Trennung auch in dem Spannungsfeld zwischen möglichst viel analytischer Information und möglichst kurzer Analysenzeit, oder anders ausgedrückt: so viel analytische Information wie nötig in so kurzer Analysenzeit wie möglich. Schnelle Trennungen gehen dabei mit einem gewissen Verlust an analytischer Information in Form von Auflösung einher. Leicht einsichtig wird dies, wenn man sich die Peakkapazität – bei Gradienttrennungen definiert als der Quotient aus der Gradientzeit und der durchschnittlichen Peakbasispeakbreite – relativ zum Gradientvolumen [3] als Produkt aus Gradientdauer und Flussrate betrachtet.

      Abbildung 3.1 veranschaulicht anhand eines UHPLC-Anwendungsbeispiels, wie sich die Peakkapazität in Abhängigkeit des Gradientvolumens, hier der einfacheren Übertragbarkeit wegen ausgedrückt als das Vielfache des Säulenvolumens, ändert. Es ergibt sich, dass die Peakkapazität einer Gradienttrennung mit steigendem Gradientvolumen zunächst steil ansteigt und dann einer Sättigung entgegenstrebt. Gemäß dem sich daraus ableitenden Gradientvolumenkonzept sind schnelle Trennungen, die durch kleine Gradientvolumina auf kleinlumigen und kurzen Säulen erreicht werden, damit begrenzt in ihrer Trennleistung und eignen sich daher bevorzugt für Screening-Experimente. Zusätzlichen Nutzen bietet hier das Massenspektrometer als weitere Trenndimension, indem es auch potenziell koeluierende Substanzen noch hinreichend voneinander getrennt zu detektieren und – mit gewissen Einschränkungen – zu quantifizieren vermag. Eine vollständige Basislinientrennung ist somit bei der MS-Detektion je nach verwendetem Massenspektrometer zur Quantifizierung nicht so unbedingt erforderlich wie in der konventionellen HPLC. Möglichst hohe Peakkapazitäten erfordern größere Gradientvolumina, längere Säulen und damit längere Laufzeiten.