Engineering Physics of High-Temperature Materials. Nirmal K. Sinha
Чтение книги онлайн.

Читать онлайн книгу Engineering Physics of High-Temperature Materials - Nirmal K. Sinha страница 45

СКАЧАТЬ target="_blank" rel="nofollow" href="#ulink_ab484b60-e492-53d6-8f67-15dc157b42ae">Table 2.2 Nominal chemical compositions (wt. %) of Nimonic 90 (Betteridge and Heslop 1974), IN‐738LC and René 80 (Balikci and Raman 2000; ASMH 1991), Waspaloy (ASMH 1991), and CMSX‐10 (Erickson 1996).

      Sources: Betteridge and Heslop (1974), Balikci and Raman (2000), ASMH (1991), Erickson (1996).

Element Nimonic 90 IN‐738LC René 80 Waspaloy CMSX‐10
Ni ≈54.6 (balance) ≈61.2 (balance) ≈60 (balance) ≈58.3 (balance) ≈69.3 (balance)
Cr 19.6 16 14 19.5 2
Co 18 8.5 9.5 13.5 3
Al 1.4 3.5 3 1.3 5.7
Ti 2.35 3.5 5 3 0.2
W 2.6 4 5
Mo 0.3 1.8 4 4.3 0.4
Ta 1.7 0.05 8
C 0.09 0.1 0.17 0.08
Fe 1 0.1 0.18
B 0.003 0.01 0.1 0.006
Zr 0.07 0.1 0.06 0.06
Nb 0.9 0.1
Si 1.5 Trace Trace
Cu 0.2
Mn 1 Trace Trace
Re 6
Hf 0.3
Schematic illustration of dependence of strain age cracking susceptibility based weldability on the contents of aluminum and titanium.

      Source: N. K. Sinha.

      The repairability of a superalloy component is determined by a number of factors, such as chemical composition, grain size, grain‐boundary characteristic, substructural details of the matrix, prior heat treatment, history of service life, welding parameters, and welding processes. A full understanding of the interrelationship between the material characteristics, welding parameters, and the performance of the welded junctions requires knowledge of the physical chemistry of the parent and the filler materials involved.