Название: Organización industrial
Автор: Martin Peitz
Издательство: Bookwire
Жанр: Зарубежная деловая литература
Серия: Economía
isbn: 9789587848144
isbn:
Figura 5.1 Elección del consumidor en el modelo lineal de Hotelling
Figura 5.2 Función de beneficios en el modelo lineal de Hotelling
Aquí, queremos elaborar sobre la posibilidad de que las ubicaciones no necesariamente estén en los extremos. Entonces, aunque las funciones de beneficios no son cuasicóncavas, de todos modos podemos usar las condiciones de primer orden si las ubicaciones no están muy cerca. En esta situación, las funciones de beneficios tienen dos supremos locales, pero el que está caracterizado por las condiciones de primer orden es un maximizador global, dada la elección apropiada del competidor. Si las condiciones de primer orden definen implícitamente las mejores respuestas de las empresas, tenemos que, fijando un precio menor, por una cantidad discreta, al de la empresa rival con el fin de capturar a todos los consumidores no será rentable para la empresa 1 dado algún precio (alto) de la empresa 2. Sin embargo, la mejor respuesta de la empresa 1 p1 (p2) salta hacia abajo a p2 – τ/(l2 – l1) en algún valor crítico de p2 (a menos que l2 = l) de modo que las condiciones de primer orden ya no puedan usarse para caracterizar mejores respuestas. Note que esto implica que, en este juego, los precios no son complementos estratégicos.
El juego de fijación de precios puede caracterizarse de la siguiente manera. (i) Para l1 = l2 el equilibrio de precio único está dado por
Para evitar que vender a un precio menor que el de las otras empresas sea rentable, las dos empresas deben estar localizadas lo suficientemente lejos entre sí.
Ahora pasamos a la etapa de localización. Primero, observamos que, dado que en la etapa 1 una empresa siempre puede decidir ubicarse cerca de la empresa competidora, no existe un equilibrio perfecto en subjuegos.[11] Sin embargo, podemos argumentar que las empresas solamente pueden relocalizar gradualmente sus productos y que, por lo tanto, para nuestro propósito, sería suficiente mostrar que, en algunas ubicaciones, las empresas no tienen una tendencia a reubicarse. El problema está en que, en todo el rango de ubicaciones donde existe un equilibrio de precio, hay una tendencia a acercarse. Esto quiere decir que las empresas tienen una tendencia a moverse hacia la región donde no existe un equilibrio de precio. Esto podría llamarse “inestabilidad en la competencia” y muestra que en un modelo donde las empresas pueden decidir estratégicamente qué tipo de producto producir y qué precio fijar, no resulta claro a priori que las empresas decidan diferenciar sus productos. De hecho, las funciones de beneficios pueden ser mal comportadas de modo que el modelo no nos proporcione una predicción respecto a la localización de las empresas.
Lección 5.2 Aunque la diferenciación de productos relaja la competencia en precios, los modelos de competencia imperfecta donde las empresas escogen las características de los productos no necesariamente generan predicciones respecto a las decisiones sobre precios y productos. Las empresas pueden tener un incentivo para ofrecer mejores sustitutos para generar más demanda, lo que puede llevar a inestabilidad en la competencia.
5.2.3 El modelo cuadrático de Hotelling
Ahora analizaremos una modificación del modelo anterior que genera resultados drásticamente diferentes. Consideremos el modelo anterior con una diferencia: la función de costos de transporte es una función cuadrática de la distancia, t(|x – li|) = τ(x – li)2.
El consumidor indiferente
Como ahora los costos del transporte son cuadráticos, ya no observamos las discontinuidades que teníamos con costos de transporte lineales. Las demandas de las empresas son lineales en ambos precios, para todas las ubicaciones pares tales que
Note que estos precios convergen a c (el resultado competitivo) cuando la distancia entre empresas l2 – l1 tiende a cero. Como el consumidor marginal está ubicado en
Si las ubicaciones de las empresas están confinadas al intervalo unitario, entonces