Congo Basin Hydrology, Climate, and Biogeochemistry. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Congo Basin Hydrology, Climate, and Biogeochemistry - Группа авторов страница 55

Название: Congo Basin Hydrology, Climate, and Biogeochemistry

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119656999

isbn:

СКАЧАТЬ implications on the duration and extents of flood that sustain globally important floodplain and wetland ecosystems (Carr et al., 2019). As the Congo Basin’s rainfall climatology is very significant to global tropical rainfall during transition seasons (e.g., Ndehedehe et al., 2018b; Washington et al., 2013), this again reinforces the importance of the Congo basin hydro‐climatology to global climate change. Hence, a key hypothesis future assessment and consideration is to understand if the depletion of the Congo forest through uncontrolled logging and deforestation impacts the global water cycle.

      Christopher is grateful to the American Geophysical Union (AGU) grant sponsored by NASA and National Science Foundation in collaboration with The Ohio State University and several other international agencies. This funding supported his keynote speech at the AGU Chapman conference held in Washington DC, USA, in September 2018. The authors further thank NASA for the three GRACE mascon products, NOAA for the satellite precipitation and sea surface temperature, and GRDC for the discharge data used in this study.

      1 Achard, F., Eva, H. D., Stibig, H.‐J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.‐P. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999–1002. doi: 10.1126/science.1070656

      2 Agutu, N., Awange, J., Ndehedehe, C., Kirimi, F., and Kuhn, M. (2019). GRACE‐derived groundwater changes over Greater Horn of Africa: temporal variability and the potential for irrigated agriculture. Science of The Total Environment, 693, 133467. doi: 10.1016/j.scitotenv.2019.07.273

      3 Agutu, N., Awange, J., Zerihun, A., Ndehedehe, C., Kuhn, M., & Fukuda, Y. (2017). Assessing multi‐satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sensing of Environment, 194(0), 287–302. doi: 10.1016/j.rse.2017.03.041

      4 Ahmed, M., & Wiese, D. N. (2019). Short‐term trends in Africa’s freshwater resources: Rates and drivers. Science of The Total Environment, 695, 133843. doi: 10.1016/j.scitotenv.2019.133843

      5 Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O’Loughlin, F., et al. (2016). Opportunities for hydrologic research in the congo basin. Reviews of Geophysics, 54(2), 378–409. doi: 10.1002/2016RG000517

      6 Alsdorf, D., Han, S.‐C., Bates, P., & Melack, J. (2010). Seasonal water storage on the amazon floodplain measured from satellites. Remote Sensing of Environment, 114(11), 2448–2456. doi: 10.1016/j.rse.2010.05.020

      7 Anyah, R., Forootan, E., Awange, J., & Khaki, M. (2018). Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products. Science of The Total Environment, 635, 1405–1416. doi: 10.1016/j.scitotenv.2018.04.159

      8 Bahaga, T. K., Fink, A. H., & Knippertz, P. (2019). Revisiting interannual to decadal teleconnections influencing seasonal rainfall in the Greater Horn of Africa during the 20th century. International Journal of Climatology, 39(5), 2765–2785. https://doi.org/10.1002/joc.5986

      9 Barnett, T. P., & Preisendorfer, R. (1987). Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Monthly Weather Review, 115(9), 1825–1850. doi: 10.1175/1520‐0493(1987)115<1825:OALOMA>2.0.CO;2

      10 Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two‐dimensional flood inundation modelling. Journal of Hydrology, 387(1), 33–45. doi: 10.1016/j.jhydrol.2010.03.027

      11 Bazrafshan, J., Hejabi, S., & Rahimi, J. (2014). Drought monitoring using the multivariate standardized precipitation index (MSPI). Water Resources Management, 28, 1045–1060. doi: 10.1007/s11269‐014‐0533‐2

      12 Becker, M., Papa, F., Frappart, F., Alsdorf, D., Calmant, S., da Silva, J. S., et al. (2018). Satellite‐based estimates of surface water dynamics in the Congo River Basin. International Journal of Applied Earth Observation and Geoinformation, 66, 196–209. https://doi.org/10.1016/j.jag.2017.11.015

      13 Bell, J. P., Tompkins, A. M., Bouka‐Biona, C., & Sanda, I. S. (2015). A process‐based investigation into the impact of the Congo basin deforestation on surface climate. Journal of Geophysical Research: Atmospheres, 120(12), 5721–5739. doi: 10.1002/2014JD022586

      14 Bretherton, C. S., Smith, C., & Wallace, J. M. (1992). An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5(6), 541–560. doi: 10.1175/1520‐0442(1992)005<0541:AIOMFF>2.0.CO;2

      15 Bunn, S. E., Thoms, M. C., Hamilton, S. K., & Capon, S. J. (2006). Flow variability in dryland rivers: boom, bust and the bits in between. River Research and Applications, 22(2), 179–186. doi: 10.1002/rra.904

      16 Carr, A. B., Trigg, M. A., Tshimanga, R. M., Borman, D. J., & Smith, M. W. (2019). Greater water surface variability revealed by new congo river field data: Implications for satellite altimetry measurements of large rivers. Geophysical Research Letters, 46(14), 8093–8101. doi: 10.1029/2019GL083720

      17 Cenacchi, N. (2014). Drought risk reduction in agriculture: A review of adaptive strategies in East Africa and the Indo‐Gangetic plain of South Asia. International Food Policy Research Institute (IFPRI), discussion Paper 1372. Retrieved from: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/128277. 23 September 2017.

      18 Chen, Y., Wang, B., Pollino, C. A., Cuddy, S. M., Merrin, L. E., & Huang, C. (2014). Estimate of flood inundation and retention on wetlands using remote sensing and GIS. Ecohydrology, 7(5), 1412–1420. doi: 10.1002/eco.1467

      19 Conway, D., Persechino, A., Ardoin‐Bardin, S., Hamandawana, H., Dieulin, C., & Mahé, G. (2009). Rainfall and water resources variability in Sub‐Saharan Africa during the twentieth century. Journal of Hydrometeorology, 10(1), 41–59. doi: 10.1175/2008JHM1004.1

      20 Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297. https://doi.org/10.1007/BF00994018

      21 Creese, A., Washington, R., & Jones, R. (2019). Climate change in the Congo Basin: processes related to wetting in the December–February dry season. Climate Dynamics, 53, 3583–3602. doi: 10.1007/s00382‐019‐04728‐x

      22 Crowley, J. W., Mitrovica, J. X., Bailey, R. C., Tamisiea, M. E., & Davis, J. L. (2006). Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophysical Research Letters, 33(19), L19402. doi: 10.1029/2006GL027070

      23 Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E., et al. (2009). Spatio‐temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. Journal of Hydrology, 375(1–2), 90–102. doi: 10.1016/j.jhydrol.2008.12.012

      24 Dyer, E. L. E., Jones, D. B. A., Nusbaumer, J., Li, H., Collins, O., Vettoretti, G., & Noone, D. (2017). Congo basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research: Atmospheres, 122(13), 6882–6898. doi: 10.1002/2016JD026240

      25 Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., et al. (2003). Implementation of noah land surface СКАЧАТЬ