Step-by-Step Design of Large-Scale Photovoltaic Power Plants. Houshang Karimi
Чтение книги онлайн.

Читать онлайн книгу Step-by-Step Design of Large-Scale Photovoltaic Power Plants - Houshang Karimi страница 7

Название: Step-by-Step Design of Large-Scale Photovoltaic Power Plants

Автор: Houshang Karimi

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119736585

isbn:

СКАЧАТЬ Even PointB&QBill of QuantitiesCCTVClosed Circuit TelevisionCdTeCadmium TellurideCFCapacity FactorCISCopper, Indium, SeleniumCTCurrent TransformerCZTSCopper Zinc Tin SulfideDCDirect CurrentDEMDigital Elevation ModelDHIDiffuse Horizontal IrradianceDIgSIlentDigital Simulator for Electrical NetworkDNIDirect Normal IrradiationDSMDigital Surface ModelEHVExtra‐High VoltageEPCEngineering, Procurement, and ConstructionETAPElectrical Transient Analyzer ProgramESCExtremum Seeking ControlETRExtraterrestrial RadiationETSEmits Extraterrestrial SpectrumEVAEconomic Value AddedFLMFirst‐Line ManagementFPVFloating PVGaAsGallium ArsenideGaInPGallium Indium PhosphorousGHIGlobal Horizontal IrradiationGIGSCopper Indium Gallium DeselenideGPRGround Potential RiseGTIGlobal Tilted IrradiationHJTHetero‐Junction TechnologyHSEHealth, Safety, and EnvironmentalHVHigh VoltageIBCInterdigitated Back ContactIEAInternational Energy AgencyIECInternational Electrotechnical CommissionIEEEInstitute for Electrical and Electronic EngineersIFAIssue for ApprovalIFCIssue for CommentIFIIssue for InformationIncCondIncremental ConductanceIRRInternal Rate of ReturnI–VCurrent–VoltageLIDLight‐Induced DegradationLS‐PVPPLarge‐Scale Photovoltaic Power PlantLVLow VoltageLVSLow‐Voltage SwitchgearMDLMaster Document ListMono siMonocrystalline SiliconMPPMassively Parallel Processing/ProcessorMPPTMaximum Power Point TrackingMS‐PVPPMedium‐Scale PV power plantMVMedium VoltageMWMegaWattNECNational Electrical CodeNRELNational Renewable Energy LaboratoryNRMSENormalized Root Mean Square ErrorsNPRNominal Power RatioNPVNet Present ValueNZENet‐Zero EmissionsNZE2050New Net‐Zero Emissions By 2050OCVOpen‐Circuit VoltageO&MOperations and MaintenancePCCPoint of Common CouplingPDCPersonal Digital Cellular SystemPIDPotential‐Induced DegradationPoly‐SiPolycrystalline siliconP&OPerturbation and ObservationPRPerformance RatioPSCADPower System Computer‐Aided DesignPTPotential TransformerPVPhotovoltaicP–VPower–VoltagePVCPolyvinyl ChloridePVPPSmall‐Scale PV Power PlantSCSolar ConstantSCADASupervisory Control and Data AcquisitionSCCShort‐Circuit CurrentSLDSingle‐Line DiagramSPDSurge Protective DeviceSTCStandard Test ConditionTHDTotal Harmonic DistortionTSITotal Solar IrradianceUFCUnified Facility CriteriaUFLUnder Frequency LoadUHVUltrahigh VoltageULUnderwriters LaboratoriesUVUltravioletVCIVirtual Central InverterVLS‐PVPPVery Large‐Scale PV Power PlantWBSWork Breakdown StructureXLPECross‐Linked Polyethylene

Projective length of solar raysK Weight of PV array ϕ Latitude of the locationModuleV mp, min Minimum module voltage expected at the highest site temperatureV mp Rated module voltage at max powerT max Temperature coefficient at maximum expected temperatureΔT Temperature variance between standard test condition (STC) and maximum expected temperatureN s, min Minimum number of PV modules in seriesInverterV min Inverter minimum MPPT voltageModuleV OC, max Maximum module voltage corrected for the lowest ambient temperatureV OC Rated open‐circuit voltage of the PV moduleT min Temperature coefficient at minimum expected temperatureN S, max Maximum number of PV modules in seriesInverterV max Inverter maximum allowable voltageModuleI DC, max Maximum string currentI DC Short‐circuit current of the PV moduleT max Temperature coefficient at maximum expected temperatureP PV, nom Rated PV installed powerG Th A nominal irradiance levelNPR Inverter downsize coefficient (nominal power ratio)P inv, nom − total Total power of the inverter that is required for the entire power plantP inv, nom − exp ected Expected power of the inverterS AC AC active power η Inverter efficiencyS F Safety coefficient and is generally considered between 1.2 and 1.3I O Cable current carrying capacity from datasheetI O, NEW Current carrying capacity corresponding to the installation conditionsT F Correction factor used for ambient temperatureG F Reduction factor used for more than one circuitR Cable resistance per meter.N mod ule Number of modules connected in series to a stringP n Total Pm, STC (nominal power PV module at STC) of modules connected in series (w)V ID Reverse voltage of string diodeV OC, STC Maximum operating open‐circuit voltage of the stringN string Number of PV modules in stringI sc, STC Short‐circuit currentk T Ambient temperature coefficient from datasheetk L Alternating load factor that is normally considered as 0.9k H Derating factor for high number of adjacent fusesI FD Fuse rated current given in the datasheetI DC, max Isc at maximum ambient temperaturek Ir Maximum irradianceI SC, MOD Short‐circuit current of the PV moduleT max normal Maximum permitted average temperature under normal conditions (35 °C)
Maximum allowable temperature rise that is 70 °CT amb Ambient temperature
Total short‐circuit current of the arrayR(x)ReflectanceA(x)Absorptance at the angle xT(x)TransmittanceC A temperature‐independent constantE g Band gap of the material extrapolated to absolute zero temperatureq Elementary chargeP in(q) Output power of the PV set q, which is the dc input power of each inverterA S, I(q) Shaded area of the PV set q, which is caused due to the shading by the front (southern) PV blockP pv (y, d, t, β )Actual output power of each PV module on year/day and at timeP max, STC Maximum output power at the STC conditionsP max(G, T)Maximum output power at a given irradiance G and temperature TP dc (t)Inverter dc instantaneous powerP ac (t)AC powerP loss (t)Power lossesP dc, pu Per unit value of dc powerP i PV module powerP max, i Module maximum powerr dc Resistance of the dc cableV dc dc voltage at the cable terminalsP PV, peak Installed peak power under STCG(t)Global solar irradiance on the PV plane at time tr ac AC cable resistanceI ac, cable Line current rms valueV LL rms value of the line voltageN it Total number of invertersN i Number of inverters that are connected to an individual AC cableP Fe Core lossesP Cu, N Copper losses under the nominal operating power SN of each identical transformerS t (t)Total apparent power loading of the installation at the moment tN tr Number of identical transformersP MPP MPP powerV MPP MPP voltageI MPP MPP currentV string Total voltage of string∆T Temperature variance between STC and minimum expected temperature.I sc Short‐circuit current at STC∆V Percentage of cable voltage dropL Cable length∆P Percentage of DC cable power losst Short‐circuit duration that is 1 second for MVU n Rated fuse voltageI SN Nominal current of a fuseI testing Testing current of a fuseLpv, 1length of each PV moduleLpv, 2width of each PV moduleη1, DCDC cables power loss coefficientPLDCpower‐length productPm–sh (y, d, t, β)output power of each PV module at the maximum power points (MPP)Pm (y, d, t, β)power that is produced by each PV module at the MPPNttotal number of strings in a PV installationPDC (t)available DC power at the time tGSTCsolar irradiance under STCDPa coefficient that accounts for the power reduction due to the temperature rise in cellsΔθ(°C)rise of the cell temperature above 25 °C

      1.1 Solar Energy

      The source of solar energy is the sun. Solar СКАЧАТЬ