Идиот или гений? Как работает и на что способен искусственный интеллект. Мелани Митчелл
Чтение книги онлайн.

Читать онлайн книгу Идиот или гений? Как работает и на что способен искусственный интеллект - Мелани Митчелл страница 11

СКАЧАТЬ я описала некоторые математические подробности в примечании[30].)

      Все шаги повторяются на каждом из обучающих примеров. Процесс обучения много раз проходится по всем обучающим примерам, слегка корректируя веса и пороговое значение при каждой ошибке перцептрона. Обучая голубей, психолог Б. Ф. Скиннер обнаружил, что учиться лучше постепенно, совершая множество попыток, и здесь дело обстоит точно так же: если слишком сильно изменить веса и пороговое значение после одной попытки, система может научиться неправильному правилу (например, чрезмерному обобщению, что “нижняя и верхняя половины восьмерки всегда равны по размеру”). После множества повторов каждого обучающего примера система (как мы надеемся) окончательно определяет набор весов и пороговое значение, при которых перцептрон дает верные ответы для всех обучающих примеров. На этом этапе мы можем проверить перцептрон на примерах из тестового множества и увидеть, как он справляется с распознаванием изображений, не входивших в обучающий набор.

      Детектор восьмерок полезен, когда вас интересуют только восьмерки. Но что насчет распознавания других цифр? Не составляет труда расширить перцептрон таким образом, чтобы он выдавал десять выходных сигналов, по одному на каждую цифру. Получая пример рукописной цифры, перцептрон будет выдавать единицу в качестве выходного сигнала, соответствующего этой цифре. При наличии достаточного количества примеров расширенный перцептрон сможет узнать все необходимые веса и пороговые значения, используя алгоритм обучения.

      Розенблатт и другие исследователи показали, что сети перцептронов можно научить выполнять относительно простые задачи на восприятие, а еще Розенблатт математически доказал, что теоретически достаточно обученные перцептроны могут безошибочно выполнять задачи определенного, хотя и строго ограниченного класса. При этом было непонятно, насколько хорошо перцептроны справляются с более общими задачами ИИ. Казалось, эта неопределенность не мешала Розенблатту и его спонсорам из Научно-исследовательского управления ВМС США делать до смешного оптимистичные прогнозы о будущем алгоритма. Освещая пресс-конференцию Розенблатта, состоявшуюся в июле 1958 года, газета The New York Times написала:

      Сегодня ВМС продемонстрировали зародыш электронного компьютера, который, как ожидается, сможет ходить, говорить, видеть, писать, воспроизводить себя и сознавать свое существование. Было сказано, что в будущем перцептроны смогут узнавать людей, называть их по именам и мгновенно переводить устную речь и тексты с одного языка на другой[31].

      Да, даже в самом начале ИИ страдал от шумихи. Вскоре я расскажу о печальных последствиях такого ажиотажа. Но пока позвольте мне на примере перцептронов объяснить основные различия между символическим и субсимволическим подходом к ИИ.

      Поскольку “знания” перцептрона состоят СКАЧАТЬ



<p>30</p>

Математически алгоритм обучения перцептрона описывается следующим образом. Для каждого веса wj: wj wj + η (t y) xj, где t – верный выходной сигнал (1 или 0) для заданного входного сигнала, y – фактический выходной сигнал перцептрона, xj – входной сигнал, связанный с весом wj, а η – скорость обучения, задаваемая программистом. Стрелка обозначает обновление. Порог учитывается путем создания дополнительного “входного сигнала” xс постоянным значением 1, которому присваивается вес w0 = –порог. При наличии этого дополнительного входного сигнала и веса (называемого смещением) перцептрон дает сигнал на выходе, только если сумма входных сигналов, помноженных на веса (то есть скалярное произведение входного вектора и вектора веса) больше или равняется 0. Часто входные значения масштабируются и подвергаются другим преобразованиям, чтобы веса не становились слишком велики.

<p>31</p>

Цит. по: M. Olazaran, “A Sociological Study of the Official History of the Perceptrons Controversy”, Social Studies of Science 26, no. 3 (1996): 611–659.