Distributed Acoustic Sensing in Geophysics. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Distributed Acoustic Sensing in Geophysics - Группа авторов страница 29

Название: Distributed Acoustic Sensing in Geophysics

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119521778

isbn:

СКАЧАТЬ J. P. (1990). Distributed fibre optic sensor system. UK Patent, GB2222247A.

      10 Dakin, J., & Culshaw, B. (Eds.). (1989). Optical fiber sensors: Systems and applications (Vol. 2, Chap. 15). Artech House Optoelectronics. Norwood, Massachusetts.

      11 De Rosa, M., Carberry, J., Bhagavatula, V., Wagner, K., & Saravanos, C. (2002). High‐power performance of single‐mode fiber‐optic connectors. Journal of Lightwave Technology, 20(5), 851.

      12 Ellis, R. (2007). Explanation of reflection features in optical fiber as sometimes observed in OTDR measurement traces. Corning White Paper.

      13 Farhadiroushan, M., Finfer, D., Strusevich, D., Shatalin, S., & Parker, T. (2021). Non‐isotropic acoustic cable. U.S. Patent Application No. 15/804,657.

      14 Farhadiroushan, M., Parker, T. R., & Shatalin, S. (2010). Method and apparatus for optical sensing. WO2010136810A2.

      15  Farhadiroushan, M., Parker, T., & Shatalin, S. (2021). U.S. Patent No. 10,883,861. Washington, DC: U.S. Patent and Trademark Office.

      16 Finfer, D. C., Mahue, V., Shatalin, S., Parker, T., & Farhadiroushan, M. (2014, October). Borehole flow monitoring using a non‐intrusive passive distributed acoustic sensing (DAS). Paper presented in SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. doi: 10.2118/170844‐MS

      17 Fougerat, A., Guérineau, L., & Tellier, N. (2018). High‐quality signal recording down to 0.001 Hz with standard MEMS accelerometers. Paper presented in SEG Technical Program Expanded Abstracts 2018 (pp. 196–200). Society of Exploration Geophysicists.

      18 Garnier, A., & Chanin, M. L. (1992). Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere. Applied Physics B, 55(1), 35–40.

      19 Ghiglia, D. C., & Pritt, M. D. (1998). Two‐dimensional phase unwrapping. Theory, algorithms, and software. New York, USA: A Wiley‐Interscience Publication.

      20 Goodman, J. W. (2005). Introduction to Fourier optics (Chap. 2, 6). Roberts and Company Publishers. Englewood, Colorado.

      21 Handerek, V. (2016). U.S. Patent No. 9,304,017. Washington, DC: U.S. Patent and Trademark Office.

      22 Hartog, A. H. (2017). An introduction to distributed optical fibre sensors. CRC press. Boca Raton, Florida.

      23 Hartog, A. H., Kotov, O. I., & Liokumovich, L. B. (2013, July). The optics of distributed vibration sensing. Paper presented in Second EAGE Workshop on Permanent Reservoir Monitoring 2013–Current and Future Trends. doi: 10.3997/2214‐4609.20131301

      24 Hartog, A., & Kader, K. (2012). U.S. Patent Application No. 13/221,280.

      25 Hornman, K., Kuvshinov, B., Zwartjes, P., & Franzen, A. (2013, June). Field trial of a broadside‐sensitive distributed acoustic sensing cable for surface seismic. Paper presented in 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013. doi: 10.3997/2214‐4609.20130383

      26 Itoh, K. (1982). Analysis of the phase unwrapping algorithm. Applied Optics, 21(14), 2470–2470. doi: 10.1364/AO.21.002470

      27 Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., et al. (2018). Dynamic strain determination using fibre‐optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 2509. doi: 10.1038/s41467‐018‐04860‐y

      28 Juarez, J. C., Maier, E. W., Choi, K. N., & Taylor, H. F. (2005). Distributed fiber‐optic intrusion sensor system. Journal of Lightwave Technology, 23(6), 2081–2087. doi: 10.1109/JLT.2005.849924

      29 Juškaitis, R., Mamedov, A. M., Potapov, V. T., & Shatalin, S. V. (1992). Distributed interferometric fiber sensor system. Optics Letters, 17(22), 1623–1625. doi: 10.1364/OL.17.001623

      30 Kazovsky, L. G. (1989). Phase‐and polarization‐diversity coherent optical techniques. Journal of Lightwave Technology, 7(2), 279–292. doi: 10.1109/50.17768

      31 Kirkendall, C. K., & Dandridge, A. (2004). Overview of high performance fibre‐optic sensing. Journal of Physics D: Applied Physics, 37(18), R197. doi: 10.1088/0022‐3727/37/18/R01

      32 Kreger, S. T., Gifford, D. K., Froggatt, M. E., Soller, B. J., & Wolfe, M. S. (2006, October). High resolution distributed strain or temperature measurements in single‐and multi‐mode fiber using swept‐wavelength interferometry. In Optical Fiber Sensors (p. ThE42). Optical Society of America. doi: 10.1364/OFS.2006.ThE42

      33 Lewis, M. F. (1985). On Rayleigh waves and related propagating acoustic waves. In Rayleigh‐wave theory and application (pp. 37–58). Springer, Berlin, Heidelberg.

      34 Martin, E. R., Lindsey, N., Ajo‐Franklin, J., & Biondi, B. (2018). EarthArXiv, Introduction to interferometry of fiber optic strain measurements (pp. 1–33).

      35 Martins, H. F., Martin‐Lopez, S., Corredera, P., Salgado, P., Frazão, O., & González‐Herráez, M. (2013). Modulation instability‐induced fading in phase‐sensitive optical time‐domain reflectometry. Optics Letters, 38(6), 872–874. doi: 10.1364/OL.38.000872

      36 Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., et al. (2014). Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophysical Prospecting, 62(4), 679–692.

      37 Miller, D. E., Daley, T. M., White, D., Freifeld, B. M., Robertson, M., Cocker, J., et al. (2016). Simultaneous acquisition of distributed acoustic sensing VSP with multi‐mode and single‐mode fibre‐optic cables and 3C‐geophones at the Aquistore CO2 storage site. CSEG Recorder, 41(6).

      38 Matichard, F., Lantz, B., Mittleman, R., Mason, K., Kissel, J., Abbott, B., et al. (2015). Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance. Classical and Quantum Gravity, 32(18), 185003.

      39 Parker, T. R., Farhadiroushan, M., Feced, R., Handerek, V. A., & Rogers, A. J. (1998). Simultaneous distributed measurement of strain and temperature from noise‐initiated Brillouin scattering in optical fibers. IEEE Journal of Quantum Electronics, 34(4), 645–659. doi: 10.1109/3.663443

      40 Parker, T., Shatalin, S., & Farhadiroushan, M. (2014). Distributed acoustic sensing—a new tool for seismic applications. First Break, 32(2), 61–69. doi: 10.3997/1365‐2397.2013034

      41 Peterson, J. R. (1993). Observations and modeling of seismic background noise (No. 93‐322). US Geological Survey.

      42 Posey, R., Johnson, G. A., & Vohra, S. T. (2000). Strain sensing based on coherent Rayleigh scattering in an optical fibre. Electronics Letters, 36(20), 1688–1689. doi: 10.1049/el:20001200

      43 Rathod, R., Pechstedt, R. D., Jackson, D. A., & Webb, D. J. (1994). Distributed temperature‐change sensor based on Rayleigh backscattering in an optical fiber. Optics Letters, 19(8), 593–595. doi: 10.1364/OL.19.000593

      44 Ringler, A. T., & Hutt, C. R. (2010). Self‐noise models of seismic instruments. Seismological Research Letters, 81(6), 972–983.

      45 Rea, N. P., Wilson, T., & Juškaitis, R. (1996). Semiconductor laser confocal and interference microscopy. Optics Communications, 125(1–3), 158–167. doi: 10.1016/0030‐4018(95)00701‐6

      46 Richter, P., Parker, T., Woerpel, C., Wu, Y., Rufino, R., & Farhadiroushan, M. (2019). Hydraulic fracture monitoring and optimization in unconventional completions using СКАЧАТЬ