Название: Food Chemistry
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Техническая литература
isbn: 9781119792116
isbn:
47. Ibrahim, A., Grassi, M., Lovati, F., Parisi, B., Spinelli, L., Torricelli, A., Vanoli, M., Non-destructive detection of potato tubers internal defects: critical insight on the use of time-resolved spectroscopy. Adv. Hortic. Sci., 34, 1S, 43–51, 2020.
48. Djenane, D. and Roncalés, P., Carbon monoxide in meat and fish packaging: advantages and limits. Foods, 7, 2, 12, 2018.
49. Gaikwad, P.S., Yadav, B.K., Sugumar, A., Fabrication of natural colorimetric indicators for monitoring freshness of ready-to-cook idli batter. Packag. Technol. Sci., 34, 1–8, 2020.
50. Fellows, P.J., Food Processing Technology: Principles and Practice, Elsevier, Woodhead Publishing, Sawston, United Kingdom, 2009.
51. Ghosh, T. and Dash, K.K., Modeling on respiration kinetics and modified atmospheric packaging of fig fruit. J. Food Meas. Charact., 14, 1092–1104, 2020.
52. Minh, N.P., Influence of modified atmospheric packaging and storage temperature on the physico-chemical, microbial and organoleptic properties of cantaloupe (Cucumis melo) fruit. Res. Crops, 21, 3, 506–511, 2020.
53. Baswal, A.K., Dhaliwal, H.S., Singh, Z., Mahajan, B.V.C., Influence of Types of Modified Atmospheric Packaging (MAP) Films on Cold-Storage Life and Fruit Quality of ‘Kinnow’Mandarin (Citrus nobilis Lour X C. deliciosa Tenora). Int. J. Fruit Sci., 20, 1–18, 2020.
54. Junior, M.M., Castanha, N., Dos Anjos, C.B.P., Augusto, P.E.D., Sarmento, S.B.S., Ozone technology as an alternative to fermentative processes to improve the oven-expansion properties of cassava starch. Food Res. Int., 123, 56–63, 2019.
55. Pandiselvam, R., Subhashini, S., Banuu Priya, E.P., Kothakota, A., Ramesh, S.V., Shahir, S., Ozone based food preservation: a promising green technology for enhanced food safety. Ozone Sci. Eng., 41, 1, 17–34, 2019.
56. Porto, E., Alves Filho, E.G., Silva, L.M.A., Fonteles, T.V., do Nascimento, R.B.R. et al., Ozone and plasma processing effect on green coconut water. Food Res. Int., 131, 109000, 2020.
57. Brodowska, A.J., Nowak, A., Śmigielski, K., Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr., 58, 13, 2176–2201, 2018.
58. Gallego-Juárez, J.A., Basic principles of ultrasound, in: Ultrasound Food Process, pp. 1–26, John Wiley & Sons, Woodhead Publishing, Sawston, United Kingdom, 2017.
59. Misra, N.N., Schlüter, O., Cullen, P.J. (Eds.), Cold Plasma in Food and Agriculture: Fundamentals and Applications, Academic Press, Cambridge, Massachusetts, 2016.
60. Knirsch, M.C., Dos Santos, C.A., de Oliveira Soares, A.A.M., Penna, T.C.V., Ohmic heating–a review. Trends Food Sci. Technol., 21, 9, 436–441, 2010.
61. Kaur, N. and Singh, A.K., Ohmic heating: concept and applications—a review. Crit. Rev. Food Sci. Nutr., 56, 14, 2338–2351, 2016.
62. Liu, Y., Tang, T., Duan, S., Qin, Z., Zhao, H. et al., Applicability of Rice Doughs as Promising Food Materials in Extrusion-Based 3D Printing. Food Bioprocess. Tech., 13, 3, 548–563, 2020.
63. Kalogeropoulos, N., Salta, F.N., Chiou, A., Andrikopoulos, N.K., Formation and distribution of oxidized fatty acids during deep-and pan-frying of potatoes. Eur. J. Lipid Sci., 109, 11, 1111–1123, 2007.
64. Arvanitoyannis, I.S. and Dionisopoulou, N., Acrylamide: formation, occurrence in food products, detection methods, and legislation. Crit. Rev. Food Sci. Nutr., 54, 6, 708–733, 2014.
65. Odueke, O.B., Farag, K.W., Baines, R.N., Chadd, S.A., Irradiation applications in dairy products: a review. Food Bioprocess. Tech., 9, 5, 751–767, 2016.
66. Pati, S., Chatterji, A., Dash, B.P., Raveen Nelson, B., Sarkar, T. et al., Structural Characterization and Antioxidant Potential of Chitosan by γ-Irradiation from the Carapace of Horseshoe Crab. Polymers, 12, 10, 2361, 2020.
67. Cserháti, T., Chromatography in authenticity and traceability tests of vegetable oils and dairy products: a review. Biomed. Chromatogr., 19, 3, 183–190, 2005.
68. [15] Wang, M., Li, R., Zou, S., Determination of carbofuran residue in aquatic products by gas chromatography. Chin. J. Chromatogr., 26, 6, 775–777, 2008.
69. McDowell, I., Taylor, S., Gay, C., The Phenolic Pigment Composition of Black Tea Liquors Part I: Predicting Quality. J. Agric. Food Chem., 69, 467–474, 1995.
70. [22] Calabrese, M., Stancher, B., Riccobon, P., High-Performance Liquid Chromatography Determination of Proline Isomers in Italian Wines. J. Agric. Food Chem., 69, 361–366, 1995.
71. Haughey, S.A., Graham, S.F., Cancouet, E., Elliott, C.T., The application of Near- Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chem., 136, 3–4, 1557–1561, 2012.
72. [31] Ozen, B.F. and Mauer, L.J., Detection of hazelnut oil adulteration using FTIR spectroscopy. J. Agric. Food Chem., 50, 3898–3901, 2002.
73. Hohmann, M., Differentiation of Organically and Conventionally Grown Tomatoes by Chemometric Analysis of Combined Data from Proton Nuclear Magnetic Resonance and Mid-Infrared Spectroscopy and Stable Isotope Analysis. J. Agric. Food Chem., 63, 43, 9666–9675, 2015.
74. [36] Drivelos, S.A. and Georgiou, C.A., Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. TrAC - Trends Analyt. Chem., 40, 38–51, 2012.
75. Casale, M., Oliveri, P., Armanino, C., NIR and UV Vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterization of Italian red wines. Anal. Chim. Acta, 668, 143–148, 2010.
76. [49] Singh, V.P., Pathak, V., Nayak, N.K., Verma, A.K., Umaraw, P., Recent developments in meat species speciation – a review. J. Livest. Sci., 5, 49–64, 2014.
77. Khan, S.K., Mirza, J., Anwar, F., Abdin, M.Z., Development of RAPD marker for authentication of Piper nigrum (L). Environ. We Int. J. Sci. Tech., 5, 47–56, 2010.
78. [61] Babaei, S., Talebi, M., Bahar, M., Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control, 35, 1, 323–328, 2013.
79. Dhanya, K., Syamkumar, S., Jaleel, K., Sasikumar, B., Random amplified polymorphic DNA technique for the detection of plant based adulterants in chilli powder (Capsicum annuum). J. Spices Aromat. Crops, 17, 75–81, 2008.
80. [69] Cao, H., But, P.P., Shaw, P.C., Authentication of the Chinese drug “Ku-di-dan” (herba Elephantopi) and its substitutes using random-primed polymerase chain reaction (PCR). Acta Pharm. Sin., 31, 543–553, 1996.
81. Martins-Lopes, P., Gome, S., Santos, E., Guedes-Pinto, H., DNA markers for Portuguese olive oil fingerprinting. J. Agric. Food Chem., 56, 24, 11786–1179, 2008.
82. [75] Pereira, L., Martins-Lopes, P., Batista, C., Zanol, G.C., Clímaco, P., Brazão, J., Molecular markers for assessing must varietal origin. Food Anal. Methods, 5, 6, 1252–1259, 2012.
83. Dhanya, СКАЧАТЬ