Physikalische Chemie. Peter W. Atkins
Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 34

Название: Physikalische Chemie

Автор: Peter W. Atkins

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527828326

isbn:

СКАЧАТЬ der „Zweite Hauptsatz“ erlaubt eine Aussage zur Verteilung dieser Energie (in einer Weise, die wir noch erklären werden).

      Um die Energien einzelner Atome und Moleküle beschreiben zu können, aus denen makroskopische Materie besteht, müssen wir auf die Quantenmechanik zurückgreifen. Nach dieser Theorie ist die Energie, die mit der Bewegung eines Teilchens assoziiert ist, gequantelt – das bedeutet, dass die Energie auf ganz bestimmte Werte begrenzt ist und keinen kontinuierlichen, beliebigen Wert annehmen kann. Wir können uns drei fundamentale Bewegungsarten eines Teilchens vorstellen: Die Translation (d. h. die Bewegung durch den Raum von einem Ort zum anderen), die Rotation (d. h. die Drehung des Moleküls um eine seiner Achsen) und die Schwingung (z. B. das Strecken einer Bindung oder die Krümmung einer Bindung um einen bestimmten Winkel). In der folgenden ersten Abbildung sind die relativen Abstände zwischen den Energieniveaus gezeigt, die für die vier verschiedenen Bewegungsarten von Molekülen charakteristisch sind, und sie setzt diese mit den typischen Energien von Elektronen in Atomen und Molekülen in Beziehung. Die erlaubten Energieniveaus, die mit der Translationsbewegung assoziiert sind, liegen für Atome oder Moleküle in makroskopischen Gefäßen derart dicht beieinander, dass sie ein Kontinuum bilden. Im Vergleich dazu ist die Separation zwischen den erlaubten elektronischen Energieniveaus sehr groß.

image image

      In diesem Ausdruck ist k eine fundamentale Naturkonstante, die Boltzmann-Konstante genannt wird (siehe Auflistung der Konstanten im Einband dieses Buchs; fundamentale Naturkonstanten sind unabhängig von der Form der Materie). In der zweiten Abbildung ist die Boltzmann-Verteilung bei zwei unterschiedlichen Temperaturen gezeigt: Mit steigender Temperatur ändert sich die Verteilung der Moleküle auf die verfügbaren Zustände; es werden sukzessive immer mehr Zustände mit höheren Energien besetzt, während die Besetzungszahl der Zustände mit geringerer Energie abnimmt. Nach der Boltzmann-Verteilung ist die Temperatur der einzige Parameter, der die Verteilung der Moleküle auf die verfügbaren Energiezustände (d. h. deren Besetzungszahl) beeinflusst.

      Die Boltzmann-Verteilung schafft nicht nur Klarheit über den Begriff „Temperatur“ – sie ist ein zentrales Konzept zum grundlegenden Verständnis vieler Bereiche der Chemie. Die Feststellung, dass die meisten Moleküle bei niedrigen Temperaturen nur niedrige Energiezustände besetzen, ist der fundamentale Grund für die Existenz chemischer Verbindungen im Allgemeinen sowie für die Stabilität von Flüssigkeiten und Feststoffen. Die Feststellung, dass angeregte Zustände höherer Energie bei höheren Temperaturen zugänglich werden, ist die Grundlage dafür, dass chemische Reaktionen ablaufen können – denn dadurch erhält eine Verbindung erst die Möglichkeit, sich in eine andere umzuwandeln. Diese beiden Punkte werden wir im vorliegenden Buch im Detail diskutieren.

      Sie sollten sich stets an die Boltzmann-Verteilung erinnern (die wir im Rahmen dieses Buchs noch ausführlicher behandeln werden), denn wir werden immer wieder auf sie zu sprechen kommen, wenn wir etwa die Eigenschaften makroskopischer Materie erörtern oder wenn es um die Bedeutung der Temperatur geht. Die Untersuchung von Energieübertragungen und das Wissen um die Verteilung der Energie auf energetische Zustände gemäß der Boltzmann-Verteilung sind der Schlüssel zum Verständnis der Thermodynamik sowie der Struktur und der Umwandlung von Substanzen in der Chemie.

image

      FOKUS 1

      Die Eigenschaften der Gase

      Ein Gas ist eine Form von Materie, die einen beliebigen Behälter stets vollständig ausfüllt. In diesem Fokus werden die Eigenschaften der Gase eingeführt, auf die im weiteren Verlauf des Textes zurückgegriffen wird.

       1.1 Das ideale Gas

      Ein „ideales Gas“ ist ein vereinfachendes, idealisiertes Konzept zur Beschreibung von Gasen. Die Zustandsgleichung des idealen Gases kann aus experimentellen Befunden gewonnen werden, die durch das Boyle’sche Gesetz, das Charles’sche Gesetz und durch das Avogadro-Prinzip beschrieben werden.

       1.1.1 Die Zustände der Gase; 1.1.2 Zustandsgleichungen und Gasgesetze

       1.2 Die Bewegung von Molekülen in Gasen

      Ein zentraler Aspekt der Physikalischen Chemie ist es, Modelle für das Verhalten von Molekülen aufzustellen, um die beobachteten Phänomene erklären zu können. Ein Paradebeispiel hierfür ist die Ableitung eines Modells für das Verhalten der Moleküle (oder Atome) eines idealen Gases, die sich in ständiger, ungerichteter Bewegung befinden. Dieses Modell ist die Grundlage für die molekulare kinetische Gastheorie. Sie liefert nicht nur eine Erklärung für die Gasgesetze, sondern sie kann auch benutzt werden, um die mittlere Geschwindigkeit zu berechnen, mit der sich Moleküle in einem Gas bewegen, sowie deren Abhängigkeit von der Temperatur. In Kombination mit der Boltzmann-Verteilung (siehe Prolog „Energie, Temperatur und Chemie“) erlaubt uns das Modell darüber hinaus, Geschwindigkeitsverteilungen sowie deren Abhängigkeit von Molekülmasse und Temperatur anzugeben.

       1.2.1 Die kinetische Gastheorie; 1.2.2 Intermolekulare Stöße

       1.3 Reale Gase

      Das ideale Gas ist ein ausgezeichneter Ausgangspunkt für die Betrachtung aller Gase, und dessen Eigenschaften werden uns bei der Betrachtung der Thermodynamik und der Kinetik immer wieder begegnen. Allerdings weicht das tatsächliche Verhalten von „realen Gasen“ von diesen idealisierten Eigenschaften ab. Daher beschäftigen wir uns in diesem Abschnitt mit der Interpretation dieser Abweichungen, und wir verfeinern das Modell, indem wir die Effekte molekularer Anziehungs- und Abstoßungskräfte СКАЧАТЬ