Change Detection and Image Time Series Analysis 2. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Change Detection and Image Time Series Analysis 2 - Группа авторов страница 8

Название: Change Detection and Image Time Series Analysis 2

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119882282

isbn:

СКАЧАТЬ by definition dynamic (thus implying the multitemporal capability of remote sensing instruments), multiresolution (multiple spatial and spectral resolutions) and related to different physical quantities (thus requiring multiview/multisensor capability) (Waltz and Llinas 1990).

      Data fusion is defined differently depending on the final goal of the user. Indeed, (Li et al. 1995; Pohl and van Genderen 2014) considered data fusion in remote sensing as the combination of two or more algorithms. This may include, but is not restricted to multiresolution fusion and pansharpening techniques, whose aim is to obtain multispectral images of increased spatial resolution (Vivone et al. 2015), resolution blending that consists of providing time series of data at their maximum spatial and spectral resolutions (referred to as parallel pansharpening in the multitemporal domain) (Huang and Song 2012), and data fusion for missing information reconstruction, by using complementary data (Wang and Liang 2014).

      An alternative perspective is to define data fusion in remote sensing as a decision fusion process that combines the information that is obtained from different data sets and provides sufficient generalization capability (Wald 1999). According to this definition, any type of image processing that combines two or more data sets, for example, for land cover classification, atmospheric correction or application of vegetation indices, could be considered as data fusion.

      Within the former definition, various families of data fusion techniques have been proposed in the literature. On the one hand, these methods may generally differ in their application requirements, such as the availability of ground reference data, the collected prior information and/or some ancillary data that can be used in the development of the system according to a multisource processing architecture. On the other hand, it is important to properly understand the user needs with respect to economic costs and processing time and performance. Figure 1.3 summarizes the general architecture of a data fusion technique.

      Methods in (i) consist of replacing the entire set of multiscale images by a single composite representation that incorporates all relevant data. The multiscale transformations usually employ pyramid transforms (Burt 1984), the discrete wavelet transform (Piella 2003; Forster et al. 2004; Zhang and Hong 2005), the undecimated wavelet transform (Rockinger 1996; Chibani and Houacine 2003), the dual-tree complex wavelet transform (Demirel and Anbarjafari 2010; Iqbal et al. 2013; Zhang and Kingsbury 2015; Nelson et al. 2018), the curvelet transform (Choi et al. 2005; Nencini et al. 2007), the contourlet transform (ALEjaily et al. 2008; Shah et al. 2008) and the nonsubsampled contourlet transform (Yang et al. 2007).

      Techniques in (ii) include multiscale approaches with a focus on the use of the coarser resolutions in the data set, in order to obtain fast computational algorithms. In the seminal papers (Basseville et al. 1992a, 1992b), the basis for multiscale autoregressive modeling in dyadic trees was introduced. Since then, straightforward approaches were performed to deal with multiresolution images using trees (Pérez 1993; Chardin 2000; Laferté et al. 2000; Kato and Zerubia 2012; Voisin 2012; Hedhli et al. 2014). A detailed review of some of these methods can be found in Graffigne et al. (1995) and Willsky (2002).

      Recently, with the exposure of neural networks, several multisensor data fusion techniques have been proposed based on feed-forward multilayer perceptron and convolutional neural network (CNN) architectures. Indeed, the huge amount of data makes the use of deep neural network (DNN) models possible. Many effective multi-task approaches have been developed recently to train DNN models on some large-scale remote sensing benchmarks (e.g. Chen et al. 2017; Carvalho et al. 2019; Cheng et al. 2020). The aim of these multi-task methods is to learn an embedding space from different sensors (i.e. task). This could be done by first learning the embedding of each modality separately and then combining all of the learned features as a joint representation. Then, this representation is used as an input for the last layers of different high level visual applications, for example, remote sensing classification, monitoring or change detection. Alternatively, DNN models could be used as an heterogeneous data fusion framework, learning the related parameters from all of the input sources (e.g. Ghamisi et al. 2016; Benedetti et al. 2018; Minh et al. 2018). Despite the regularization techniques used to mitigate the high computational complexity of DNN methods (Pan et al. 2015), the training of these techniques is still greedy and hard to converge, especially with remote sensing data sets.

      In the next section, we will describe two advanced methods for the supervised classification of multisource satellite image time series. These methods have the advantage of being applicable to series of two or more images taken by single or multiple sensors, operating at the same or different spatial resolutions, and with the same or different radar frequencies and spectral bands. In general, the available images in the series are temporally and spatially correlated. Indeed, temporal and spatial contextual constraints are unavoidable in multitemporal data interpretation. Within this framework, Markov models provide a convenient and consistent way of modeling context-dependent spatio-temporal entities originated from multiple information sources, such as images in a multitemporal, multisensor, multiresolution and multimission context.

      1.2.1. СКАЧАТЬ