Marine Mussels. Elizabeth Gosling
Чтение книги онлайн.

Читать онлайн книгу Marine Mussels - Elizabeth Gosling страница 32

Название: Marine Mussels

Автор: Elizabeth Gosling

Издательство: John Wiley & Sons Limited

Жанр: Техническая литература

Серия:

isbn: 9781119293934

isbn:

СКАЧАТЬ

      Mussels are dioecious (i.e. the sexes are separate), and there are usually equal numbers of males and females. The gonads extend throughout most parts of the body, except the gills, muscles and foot. Most of the gonad is in the mantle (Figure 2.6), thus accounting for its unusual thickness in mussels. The colour of the reproductive tissue is not a good indicator of the sex of an individual. Each gonad consists of a converging system of ducts leading to a gonopore on the tip of the genital papilla, which is located in the exhalant portion of the mantle cavity. Gametes are shed through the exhalant opening of the mantle and fertilisation takes place in the water column. After mussels have released their gametes, the mantle is thin and transparent. See Chapter 5 for a full description of mussel reproduction.

Schematic illustration of circulatory system of a typical bivalve. The shaded areas indicate the route of oxygenated haemolymph. While the bivalve heart has two auricles, only one of these is illustrated.

      From Pechenik (2010). Reproduced with permission from the McGraw‐Hill Companies.

      Haemolymph plays a number of important roles in bivalve physiology. These include gas exchange, osmoregulation (see Chapter 7), nutrient distribution, waste elimination and internal defence (see Chapter 11). Because haemolymph constitutes 40–60% of the fresh tissue weight, it also serves as a fluid skeleton, giving temporary rigidity to such organs as the labial palps, foot and mantle edges. The haemolymph contains cells called haemocytes, which float in a colourless plasma. Most bivalves lack circulating respiratory pigments, probably because their sedentary lifestyle and large exposed surfaces (for oxygen uptake) preclude the need for such pigments. However, haemocyanin, the typical molluscan respiratory pigment, is found in some protobranch bivalves, while haemoglobin has been reported in several bivalve families (references in Giribet 2008). Haemocytes are not confined to the haemolymph system but move freely out of the sinuses into surrounding connective tissue, the mantle cavity and gut lumen. Therefore, it is not surprising that these cells play an important role in physiological processes such as nutrient digestion and transport, excretion, tissue repair, heavy metal metabolism and internal defence. See Chapter 7 for details on haemocyte types and their functions.

      There are two types of excretory organs in bivalves, the pericardial glands and the paired nephridia or kidneys. In Mytilus, the reddish‐brown elongate kidneys lie ventral to the pericardial cavity surrounding the heart and dorsal to the gill axis, and in fact extend the complete length of the gill axis from the labial palps to the posterior adductor muscle (Figure 2.6). One arm of each kidney is glandular and opens into the pericardium, and the other end is a thin‐walled bladder that opens through a nephridiopore and empties into the exhalant chamber of the mantle cavity. See Pirie & George (1979) for a more detailed description of the excretory system in M. edulis.

      While the kidneys and pericardial glands are the major excretory organs, excretory products are probably also lost across the general body surface and particularly across the gills (see Chapter 7 for details on excretion and osmoregulation). The kidney also plays a very important role in the storage and elimination of radionuclides and heavy metals such as silver, cobalt, mercury, manganese, lead and zinc (Metian et al. 2011 and references therein; Pouil et al. 2015). In scallops, Metian et al. (2009) have shown that several of these metals are sequestered in renal concretions, mostly of calcium carbonate, before being eliminated in the urine.