Materials for Solar Energy Conversion. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Materials for Solar Energy Conversion - Группа авторов страница 21

СКАЧАТЬ cell.

Schematic illustration of dye sensitized PV cell.

      2.4.3 Organic PV Cell

Schematic illustration of Organic PV cell.

      2.4.4 Perovskite PV Solar Cells

      2.4.5 Polymer Photovoltaic Cell

      2.4.6 Quantum Dot Photovoltaic Cell

Schematic illustration of Perovskite PV cell. Schematic illustration of Quantum dot photovoltaic cell.

      Quantum dots are also called as semiconducting elements, and its size should be lesser than radius of exciton bohr [12]. Quantum dots are also called as synthetic atoms. By changing dot size, it influences energy levels and band gaps [22]. Dots are grownup with different sizes and influencing band gaps without effecting materials and building techniques [8]. Different blending duration and temperatures affect wet chemistry preparations. Solar cells needed quantum dots for adjusting band gap. In conventional methods of adjusting band gap, using lead sulfide as mono junction implementation is difficult [2]. Half of the solar energy attained to the earth surface is mostly near to the infrared region. The quantum dot PV cells makes infrared reachable [9].

      1. Bagher, A.M., Vahid, M.M.A., Mohsen, M., Types of solar cells and application. Am. J. Opt. Photonics, 3, 5, 94–113, 2015.

      2. Baskoutas, S. and Terzis, A.F., Size-dependent band gap of colloidal quantum dots. J. Appl. Phys., 99, 1, 013708, 2006.

      3. Chen, S., Gong, X., Walsh, A., Wei, S.-H., Crystal and electronic band structure of Cu 2 ZnSn X 4 (X= S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett., 94, 4, 041903, 2009.

      4. Collavini, S., Völker, S.F., Delgado, J.L., Understanding the outstanding power conversion efficiency of perovskite-based solar cells. Angew. Chem. Int. Ed., 54, 34, 9757–9759, 2015.

      5. de Wild-Scholten, M.M., Energy payback time and carbon footprint of commercial photovoltaic systems. Sol. Energy Mater. Sol. Cells, 119, 296–305, 2013.

      6. Strümpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Švrček, V., Del Cañizo, C., Tobias, I., Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Sol. Energy Mater. Sol. Cells., 15, 91, 4, 238–249, 2007.

      7. Fthenakis, V.M., Life cycle impact analysis of cadmium in CdTe PV production. Renewable Sustainable Energy Rev., 8, 4, 303–334, 2004.

      8. Gevorgyan, S.A., Madsen, M.V., Dam, H.F., Jørgensen, M., Fell, C.J., Anderson, K.F., Elschner, A., Interlaboratory outdoor stability studies of flexible roll-to-roll coated organic photovoltaic modules: Stability over 10,000 h. Sol. Energy Mater. Sol. Cells, 116, 187–196, 2013.

      9. Ghawade, S.P., Deshmukh, A.D., Deshmukh, K.A., Dhoble, S., The rise of solar cells. Recent Adv. Photovoltaics, 17, 1–38, 2017.

      10. СКАЧАТЬ