La teoría de la relatividad y los orígenes del positivismo lógico. Xavier García Raffi
Чтение книги онлайн.

Читать онлайн книгу La teoría de la relatividad y los orígenes del positivismo lógico - Xavier García Raffi страница 7

СКАЧАТЬ espacio-temporal entre los dos acontecimientos. El mantenimiento de una estructura espacio-temporal de la realidad era la garantía de medidas objetivas en física. Así, el espacio-tiempo mantenía la homogeneidad característica de la geometría euclidiana aunque perdía la ortogonalidad. La perdida de la ortogonalidad infringiría los postulados III y IV de Euclides, que mantienen respectivamente la invariabilidad de la dimensión de un segmento cuando es trasladado en el espacio y la igualdad de los ángulos rectos adyacentes producidos por el corte de dos líneas rectas. La métrica del espacio Minkowski por tanto no es euclidiana y sus elementos geométricos básicos tampoco al infringir los axiomas euclídeos.14

      3. La relatividad general

      El principio de relatividad restringida conseguía su aplicación a todas las leyes de la física con excepción de la teoría gravitacional de Newton. La necesidad de elaborar una teoría de gravitación ajustada al principio de relatividad restringida acabará produciendo una nueva generalización del principio que se extenderá a los sistemas no inerciales. Este principio de relatividad general conseguirá la invariancia de las leyes de la física para todos los observadores siendo el principio de relatividad restringida un caso particular de la relatividad general.

      Del principio de equivalencia se deducen las tres predicciones fundamentales de la relatividad general: corrimiento hacia el rojo del espectro, dilatación temporal y deformación del espacio-tiempo por la acción de un campo gravitacional. De estos tres efectos sólo nos ocupamos del último al ser el que más importancia tiene en la interpretación que de la relatividad hace el fenomenalismo, pues asegura la realidad de los espacios no euclidianos y la supeditación (o conversión) de la geometría en una rama de la física.

      En síntesis, la teoría general mantiene que la presencia de grandes masas de materia produce deformaciones en la región espacio-temporal próxima. Se supone que la curvatura en un punto es cero, por lo que le podemos aplicar las transformaciones de Lorentz de la relatividad especial válidas para un sistema inercial con campo gravitatorio nulo. Sin embargo, para establecer el intervalo entre dos puntos espacio-temporales de la región, necesitamos determinar su curvatura, para lo que necesitamos la métrica riemanniana de la que la métrica de Minkowski es un caso especial.

      La métrica de Riemann era la estructura matemática adecuada para reflejar matemáticamente las medidas físicas en el espacio-tiempo con cualquier índice de curvatura. La conversión de cualquier medida en la equivalente en otro punto del espacio garantizaba el mantenimiento de un principio de relatividad y de las constantes necesarias a las leyes físicas. Ninguna ley puede pretender ser objetiva si no es formulada en los parámetros de la métrica de Riemann. Su elemento esencial, una matriz de números conocida como tensor métrico que sintetiza las características de la geometría de cada tipo de espacio posible, es la condición a la que todas las leyes físicas deben ajustarse. Einstein pensó que en la relatividad general el campo gravitatorio debía ser expresado como un tensor métrico que precisase la deformación del espacio-tiempo producida por la distribución de la materia, deformación que produce las trayectorias que atribuimos a la fuerza de gravedad.

      Descubrimos entonces que el espacio-tiempo no es euclidiano y que la curvatura existente en él es equivalente a las fórmulas del campo gravitacional de la física newtoniana. La geometría euclidiana sólo es válida en pequeñas partes del espacio-tiempo, lo suficientemente infinitesimales como para que la curvatura no origine deformaciones apreciables. En un campo gravitatorio, la línea trazada por la trayectoria inercial de una partícula no es una línea recta, sino una geodésica: la distancia más corta entre dos puntos deja de ser una recta, sólo lo es en regiones pequeñas donde aparece como recta lo que es realmente una sección de curva. La fuerza de la atracción gravitatoria desaparece convertida en muestra de la estructura geométrica del espacio-tiempo provocada por la distribución de la materia. La generalización del principio de relatividad garantiza que todas las leyes de la física son invariantes para todos los sistemas de referencia posibles.

      La obtención de las ecuaciones del campo gravitatorio por medio del tensor métrico permitió a Einstein el cálculo de la curvatura del espacio-tiempo provocada por la masa solar. Esta curvatura no introducía ninguna variación apreciable en la trayectoria elíptica de los planetas obtenidas con la ley de gravitación newtoniana excepto en el caso de Mercurio. Este planeta presentaba unas desviaciones de la órbita de unos 43” de precesión del perihelio (treinta veces más que un posible error de cálculo) por siglo y Einstein demostró que se derivaba de sus ecuaciones.

      El éxito instantáneo de la teoría, presentada como la obra de un segundo Newton, planteó de un golpe la existencia física real de los espacios no euclidianos, la necesidad de aceptar como única reahdad la unlón dd espacio-tiempo y la padida dc la homo­ geneidad euclidiana por las defonnaciones producidas por los campos gravitatorios.

      El tiempo relativo, aparente y vulgar es una medida sensible y externa de una duración cualquiera por medio del movimiento, y de la que se sirve el vulgo en vez del tiempo verdadero; cual la hora, el día, el mes, el año.

      El flujo del tiempo absoluto no puede ser alterado. La misma es la duración o perseverancia de la existencia de las cosas tanto que los movimientos sean veloces, como tardos, como nulos.

      El orden de las partes del tiempo, al igual que el de las del espacio, es inmutable...» (Isaac Newton: Philosophia Naturalis principia mathematica, trad. de García Bacca en Historia filosófica de la ciencia, México, Universidad Autónoma de México, 1965, p. 80).