A Field Guide to British Rivers. George Heritage
Чтение книги онлайн.

Читать онлайн книгу A Field Guide to British Rivers - George Heritage страница 8

Название: A Field Guide to British Rivers

Автор: George Heritage

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781118488027

isbn:

СКАЧАТЬ hydromorphic diversity reduction along an engineered reach of the River Wharfe, suggesting that engineering‐driven changes to morphology, which are common on UK watercourses, result in severely degraded system form and function. Both studies paint an overly positive picture of fluvial system health as they fail to consider floodplain character and its almost ubiquitously degraded condition.

      Newbold (1998) estimated there were originally some 2 000 000 ha of lowland floodplain in the United Kingdom; this had been reduced by 86% to 274 000 ha by the turn of the century. This degradation was aided by post–World War II land drainage grants which saw 84 000 ha drained with no measurable increase in agricultural yield (Purseglove 1988). Further insight into wider modification to floodplain areas was reported by Heritage et al. (2016) in their analysis of floodplain connectivity and land use on eight SSSI rivers in England and Wales. They found that even these high‐value watercourses have been significantly impacted by current and former engineering and management of the river and valley bottom. Floodplains along all eight watercourses exhibited a loss of geomorphic functionality and natural habitat due to farming. Publication of the 2015 land cover mapping for England allowed Entwistle et al. (2019a) to further investigate floodplain habitat change in England, analysing floodplain habitat composition over time to chart recent historic degradation. Data from 1990 showed that intensive agriculture occupied around 38% of floodplain zones expanding to 53% by 2000 before the rate of expansion slowed slightly to cover 62% in 2007. Between 2007 and 2015, this statistic remained relatively static (64%) with some suggestion that arable areas were being transformed to pasture. Wetland areas in the form of fen, marsh, swamp, and bog are key indicators of natural floodplain functioning, and these have been devastated over recent historic time with data sets indicating that these fundamental floodplain units have been all but lost. Upland and lowland areas are both severely impacted with a near ubiquitous loss of natural floodplain functioning.

Bar graph shows the status classification of UK surface water bodies from 2009 to 2019.

      These statistics, although stark, should not come as a surprise. From a snap‐shot baseline sample of more than 5600 RHS reference sites across the United Kingdom and Isle of Man, Purseglove (1988) noted the following key points about the physical state of the 85 000 km of rivers and streams:

      1 Very few pristine lowland channels flowing through semi‐natural landscapes remain;

      2 Only 13.6% of lowland sites in England and Wales, 28% in Scotland, and 10.1% in Northern Ireland have an entirely unaltered channel;

      3 3.7% of lowland sites in England and Wales, 1.7% in Scotland, and 5% in Northern Ireland can be classified as having severely modified channels;

      4 Land drainage, flood defence, intensive agriculture, and urban development have significantly altered the channel shape and river landscape of many sites in the lowlands;

      5 Extensive reinforcement and re‐sectioning of riverbanks, and channel impoundment can cause a significant reduction in habitat diversity;

      6 Only 4.2% of sites below 50 m above sea level, with adjacent floodplain, have extensive wetlands, reflecting historical land drainage and current land‐use pressures affecting many river corridors.

Pie charts depict the cause of hydromorphic degradation in the UK.

      Source: www.riverhabitatsurvey.org/wp-content/uploads/2012/07/RHS.pdf

      It is interesting to review the figures above against the Water Framework Directive measure of river health currently being used across Europe. Entwistle et al. (2019a) used floodplain land‐use data for 2017 broken down according to current water body status generating 2975 auditable units. Water bodies presently at Good status were selected (n = 375), arable and horticulture covers in excess of 50% of the floodplain area on around 15% of Good status water bodies, this increases to around 50% for area under improved grassland and when the two are considered together between 70 and 75% of Good Status water bodies are covered by at least 50% farmland. Around half of these water bodies are utilised over 90% by farming.

      The preceding section summarises several studies relating to river and floodplain degradation; however, it remains difficult for the reader to understand exactly what has happened to watercourses and valley bottoms in England. Rivers seen in the landscape today are often regarded as “natural” systems with little regard to the actual levels of degradation they have suffered. This is perfectly understandable as we have grown up with heavily modified and managed systems, and we have few natural analogues left against which we can judge the degree of alteration. “Stability” is seen as desirable with neatness and uniformity favoured above natural functionality. Fortunately, this attitude is changing as the economics of river and floodplain management has resulted in reduced river training and a consequent increase in the influence of natural fluvial processes. Many systems are showing small but significant signs of recovery towards a better functioning system aligned with current catchment controls. Recovery has not always been back to a previous river state before human intervention as conditions in the catchment have changed significantly enough to cause a state change in our rivers, but their diversity is improving.