Cryptography, Information Theory, and Error-Correction. Aiden A. Bruen
Чтение книги онлайн.

Читать онлайн книгу Cryptography, Information Theory, and Error-Correction - Aiden A. Bruen страница 40

СКАЧАТЬ alt="upper M equals Rem left-bracket upper C Superscript d Baseline comma upper N right-bracket equals Rem left-bracket 256 77 9 Superscript 461 047 Baseline comma 808 631 right-bracket equals 205 632"/> directly using the repeated squaring technique, or take a more efficient approach, as follows: Bob calculates upper M 1 equals Rem left-bracket 256 77 9 Superscript 461 047 Baseline comma p right-bracket and upper M 2 equals Rem left-bracket 256 77 9 Superscript 461 047 Baseline comma q right-bracket, then uses the Chinese Remainder Theorem (of Chapter 19) to combine them to find upper M. Since Rem left-bracket 255 779 comma p right-bracket equals Rem left-bracket 255 779 comma 863 right-bracket equals 468, Bob knows that upper M 1 equals Rem left-bracket 256 77 9 Superscript 461 047 Baseline comma 863 right-bracket equals Rem left-bracket 46 8 Superscript 461 047 Baseline comma 863 right-bracket, and by a theorem due to Fermat2 this is equal to Rem left-bracket 46 8 Superscript 739 Baseline comma 863 right-bracket equals 238. Similarly, upper M 2 equals Rem left-bracket 256 77 9 Superscript 461 047 Baseline comma 937 right-bracket equals Rem left-bracket 4 1 Superscript 535 Baseline comma 937 right-bracket equals 429. Bob then combines upper M 1 and upper M 2 to find upper M equals 205 632.

      Remark 3.4

      Note in the above that 461 comma 047 minus 739 is divisible by p minus 1 equals 862.

      In general, suppose a comma u comma v are not divisible by p, u greater-than v and assume that u minus v is divisible by p minus 1. Then a Superscript u minus v Baseline equals a Superscript left-parenthesis p minus 1 right-parenthesis lamda Baseline equals left-parenthesis a Superscript lamda Baseline right-parenthesis Superscript p minus 1 Baseline identical-to 1 left-parenthesis mod p right-parenthesis. Therefore, a Superscript u Baseline equals a Superscript v Baseline left-parenthesis mod p right-parenthesis upon multiplying both sides by a Superscript v Baseline left-parenthesis mod p right-parenthesis.

      Remark 3.5

      Instead of using 461047 as the deciphering index, Bob can calculate that the least common multiple of p minus 1 and q minus 1 is t equals 403 416. Then he can find that the remainder of d prime e when divided by t is 1, where d prime equals 57 631, and use this for a deciphering index instead.

      Let us return again to our example of symmetric key encryption where the enciphering algorithm was “add 7.” In order to avoid overflow and storage, we fix a large positive integer upper N. Let the message be some number upper M between 0 and upper N minus 1, i.e. СКАЧАТЬ