Physiology of Salt Stress in Plants. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Physiology of Salt Stress in Plants - Группа авторов страница 21

Название: Physiology of Salt Stress in Plants

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119700494

isbn:

СКАЧАТЬ Virus‐induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ‐aminobutyric acid metabolic pathway. Plant Cell Environ. 38: 600–613.

      4 Barrett‐Lennard, E.G. (2002). Restoration of saline land through revegetation. Agric. Water Manag. 53: 213–226.

      5 Bose, J., Munns, R., Shabala, S. et al. (2017). Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J. Exp. Bot. 68: 3129–3143.

      6 Busch, K., Piehler, J., and Fromm, H. (2000). Plant succinic semialdehyde dehydrogenase: dissection of nucleotide binding by surface plasmon resonance and fluorescence spectroscopy. Biochemistry 39: 10110–10117.

      7 Chattopadhyay, A., Subba, P., Pandey, A. et al. (2011). Analysis of the grasspea proteome and identification of stress‐responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72: 1293–1307.

      8 Chaudhary, D.R., Rathore, A.P., and Jha, B. (2018). Aboveground, belowground biomass and nutrients pool in Salicornia brachiata at coastal area of India: interactive effects of soil characteristics. Ecol. Res. 33: 1207–1218.

      9 Che‐Othman, M.H., Millar, A.H., and Taylor, N.L. (2017). Connecting salt stress signalling pathways with salinity‐induced changes in mitochondrial metabolic processes in C3 plants. Plant Cell Environ. 40: 2875–2905.

      10 Chiang, C.P., Yim, W.C., Sun, Y.H. et al. (2016). Identification of ice plant (Mesembryanthemum crystallinum L.) microRNAs using RNA‐seq and their putative roles in high salinity responses in seedlings. Front. Plant Sci. 7: 1143.

      11 Choi, W.G., Toyota, M., Kim, S.H. et al. (2014). Salt stress‐induced Ca2+ waves are associated with rapid, long‐distance root‐to‐shoot signaling in plants. Proc. Natl. Acad. Sci. U. S. A. 111: 6497–6502.

      12 Christmann, A., Grill, E., and Huang, J. (2013). Hydraulic signals in long‐distance signaling. Curr. Opin. Plant Biol. 16: 203–300.

      13 Dassanayake, M. and Larkin, J.C. (2017). Making plants break a sweat: the structure, function, and evolution of plant salt glands. Front. Plant Sci. 8: 1–20.

      14 Dumont, S. and Rivoal, J. (2019). Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Front. Plant Sci. 10: 1–16.

      15 Fahy, D., Sanad, M.N.M.E., Duscha, K. et al. (2017). Impact of salt stress, cell death, and autophagy on peroxisomes: Quantitative and morphological analyses using small fluorescent probe N‐BODIPY. Sci. Rep. 7: 1–17.

      16 FAO (2005). Salt‐Affected Soils from Sea Water Intrusion: Strategies for Rehabilitation and Management. Report of the regional workshop on salt‐affected soils from sea water intrusion: Strategies for rehabilitation and management, RAP PUBLICATION 2005/11. Bangkok, Thailand 6 pp.

      17  Fernie, A.R., Carrari, F., and Sweetlove, L.J. (2004). Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7: 254–261.

      18 Finazzi, G., Petroutsos, D., Tomizioli, M. et al. (2015). Ions channels/transporters and chloroplast regulation. Cell Calcium 58: 86–97.

      19 Flowers, T.J. (1972). Salt tolerance in Suaeda maritima (L.) dum: the effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J. Exp. Bot. 23: 310–321.

      20 Flowers, T.J. and Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytol. 179: 945–963.

      21 Flowers, T.J., Troke, P.F., and Yeo, A.R. (1977). The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–121.

      22 Flowers, T.J., Munns, R., and Colmer, T.D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 115: 419–431.

      23 Fricke, W., Akhiyarova, G., Veselov, D., and Kudoyarova, G. (2004). Rapid and tissue‐specific changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Bot. 55: 1115–1123.

      24 Gallagher, J.L. (1985). Halophytic crops for cultivation at seawater salinity. Plant Soil 89: 323–326.

      25 Galvan‐Ampudia, C.S., Julkowska, M.M., Darwish, E. et al. (2013). Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23: 2044–2050.

      26 Ghosh, S., Bagchi, S., and LahiriMajumder, A. (2001). Chloroplast fructose‐1,6‐bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Sci. 160: 1171–1181.

      27 Glenn, E.P., O’Leary, J.W., Watson, M.C. et al. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251: 1065–1067.

      28 Glenn, E.P., Brown, J.J., and Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. CRC Crit. Rev. Plant Sci. 18: 227–255.

      29 Glenn, E.P., Mckeon, C., Gerhart, V. et al. (2009). Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city. Landsc Urban Plan 89: 57–64.

      30 Hamilton, E.W. and Heckathorn, S.A. (2001). Mitochondrial adaptations to NaCl. Complex I is protected by anti‐oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 126: 1266–1274.

      31 He, Y., Fu, J., Yu, C. et al. (2015). Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J. Exp. Bot. 66: 6877–6889.

      32 Hedrich, R. and Shabala, S. (2018). Stomata in a saline world. Curr. Opin. Plant Biol. 46: 87–95.

      33 Hernández, J.A., Olmos, E., Corpas, F.J. et al. (1995). Salt‐induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105: 151–167.

      34 Hong, M., Li, N., Li, J. et al. (2019). Adenosine monophosphate‐activated protein kinase signaling regulates lipid metabolism in response to salinity stress in the red‐eared slider turtle Trachemys scripta elegans. Front. Physiol. 10: 1–11.

      35 Ishikawa, T., Cuin, T.A., Bazihizina, N., and Shabala, S. (2018). Xylem ion loading and its implications for plant abiotic stress tolerance. Adv. Bot. Res. 87: 267–301.

      36 Jacoby, R.P., Taylor, N.L., and Millar, A.H. (2011). The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci. 16: 614–623.

      37 Jajoo, A., Dube, A., and Bharti, S. (1994). Mg2+‐induced lipid phase transition in thylakoid membranes is reversed by anions. Biochem. Biophys. Res. Commun. 202: 1724–1730.

      38  Jajoo, A., Bharti, S., and Kawamori, A. (2005). Interactions of chloride and formate at the donor and the acceptor side of photosystem II. J. Bioenerg. Biomembr. 37: 49–54.

      39 Jeschke, W.D., Wolf, O., and Hartung, W. (1992). Effect of NaCI salinity on flows and partitioning of C, N, and mineral ions in whole plants of white lupin, Lupinus albus L. J. Exp. Bot. 43: 777–788.

      40 Jha, A., Joshi, M., Yadav, N.S. et al. (2011). Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol. Biol. Rep. 38: 1965–1973.

      41 Jordan, F.L., Yoklic, M., Morino, K. et al. (2009). Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district. Agric. For. Meteorol. 149: 899–912.

      42 Kant, СКАЧАТЬ