Название: Electronics in Advanced Research Industries
Автор: Alessandro Massaro
Издательство: John Wiley & Sons Limited
Жанр: Техническая литература
isbn: 9781119716891
isbn:
The enabling technologies of the application fields in the Industry 5.0 scenario are:
Nanotechnologies.
Micro‐ and nanoelectronics.
Biotechnologies.
Advanced functionalized materials.
Photonics.
Advanced materials.
Advanced production technologies.
AI and big data systems.
Biomaterials.
Virtual reality and AR.
Lab‐on‐chip.
Advanced electromagnetic sensors and compatibility.
Advanced high temperature materials.
Advanced software and hardware production technologies.
Diagnostic inspection technologies.
Innovative systems for diagnostics.
References
1 1 Vaidya, S., Prashant, A., and Bhosle, S. (2018). Industry 4.0 – a glimpse. Procedia Manufacturing 20 (1): 233–238.
2 2 Moon, S.H. (2018). Industry 4.0 for advanced manufacturing and its implementation. Eurasian Journal of Analytical Chemistry 13 (6): 491–497.
3 3 Ruppert, T., Jaskó, S., Holczinger, T., and Abonyi, J. (2018). Enabling technologies for operator 4.0: a survey. Applied Sciences 8 (1650): 1–19.
4 4 Lampropoulos, G., Siekas, K., and Anastasiadis, T. (2019). Internet of Things in the context of industry 4.0: an overview. International Journal of Entrepreneurial Knowledge 7 (1): 4–19.
5 5 Novak‐Marcincin, J., Barna, J., Janak, M., and Novakova‐Marcincinova, L. (2013). Augmented reality aided manufacturing. Procedia Computer Science 25 (1): 23–31.
6 6 Segovia, D., Mendoza, M., Mendoza, E., and González, E. (2015). Augmented reality as a tool for production and quality monitoring. Procedia Computer Science 75 (1): 291–300.
7 7 Bottani, E. and Vignali, G. (2019). Augmented reality technology in the manufacturing industry: a review of the last decade. IISE Transactions 51 (3): 284–310.
8 8 Cioffi, R., Travaglioni, M., Piscitelli, G. et al. (2020). Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability 12 (492): 1–26.
9 9 Lee, W.J., Wu, H., Yun, H. et al. (2019). Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP 80 (1): 506–511.
10 10 Pandarakone, S.E., Mizuno, Y., and Nakamura, H. (2019). A comparative study between machine learning algorithm and artificial intelligence neural network in detecting minor bearing fault of induction motors. Energies 12 (2105): 1–14.
11 11 Pérez, L., Rodríguez, Í., Rodríguez, N. et al. (2016). Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16 (335): 1–26.
12 12 Massaro, A. and Galiano, A. (2020). Image processing and post‐data mining processing for security in industrial applications: security in industry. In: Handbook of Research on Intelligent Data Processing and Information Security Systems (eds. S.M. Bilan and S.I. Al‐Zoubi), 117–146. Hershey, PA: IGI Global.
13 13 Massaro, A. and Galiano, A. (2020). Infrared thermography for intelligent robotic systems in research industry inspections: thermography in industry processes. In: Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics (ed. M.K. Habib), 98–125. Hershey, PA: IGI Global.
14 14 Tan, C.L. and Mohseni, H. (2018). Emerging technologies for high performance infrared detectors. Nanophotonics 7 (1): 167–197.
15 15 Kaufmann, R., Isella, G., Sanchez‐Amores, A. et al. (2011). Near infrared image sensor with integrated germanium photodiodes. Journal of Applied Physics 110 (2): 1–6.
16 16 СКАЧАТЬ