Magma Redox Geochemistry. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Magma Redox Geochemistry - Группа авторов страница 39

Название: Magma Redox Geochemistry

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119473244

isbn:

СКАЧАТЬ because of the limited geographic distribution of the melt inclusion and submarine glass dataset; because there are no samples in common between the two distributions; and because the melt inclusions may reflect magma compositions that precede magnetite and ilmenite saturation. Thus, to first order, our global result is not inconsistent with the results of Waters and Lange (2016) and Crabtree and Lange (2011) who found congruence when they compared magnetite‐ilmenite oxybarometry to wet‐chemical titration on the same suite of very fresh aphyric lavas.

      A more direct comparison can be made between the olivine‐hosted melt inclusions and submarine glasses erupted along the active Mariana Arc, and back arc basin (BAB) glasses erupted at depth along the associated back arc spreading center: the Mariana Trough. Both datasets apply the same method (XANES) to arrive at fO2 estimates, and both sample suites comprise basaltic to basaltic andesite glasses representing similar stages of differentiation in thin crust (similar MgO). The Mariana arc front samples record fO2s that are on average 0.73 log units higher than the Mariana trough samples (Mariana arc: QFM+0.95±0.36 for n = 107 vs Mariana trough: QFM+0.22±0.30 for n=37, respectively) (Brounce et al., 2014; Kelley & Cottrell, 2009).

      Mantle lithologies recovered from arc settings comprise primarily forearc and arc peridotites. Forearc peridotites are exposed on trench walls and may sample ancient lithospheric mantle (Parkinson & Pearce, 1998), mantle wedge metamorphosed by the subducting slab (Fryer et al., 1985), or processes associated with subduction initiation (Birner et al., 2017). In comparison, arc peridotites rapidly ascend to the surface as xenoliths encased within their basaltic hosts at arc front volcanoes. The mean fO2 recorded by forearc peridotites is statistically indistinguishable from the mean fO2 recorded by ridge peridotites (tstatistic = 0.73, tcritical = 2, df = 131, p‐value = 0.47) (Fig. 3.3). As discussed by Birner et al. (2017), this result contrasts with Parkinson and Pearce (1998)’s study of forearc peridotites from the Izu‐Bonin subduction zone, primarily because we apply the spinel activity model of Sack and Ghiorso (1991) instead of Nell and Wood (1991). Yet, consistent with Parkinson and Pearce (1998), Birner et al. (2017) show that peridotites that have interacted with slab‐influenced melts do yield elevated fO2. This influence is additionally evident in the distribution of fO2 recorded by arc xenoliths from five studies (Table 3.1), which lies significantly higher, by 0.65 log units, than ridge peridotites (tstat = 4.4, tcrit = 2.0, df = 90, p‐value << 0.001) or forearc peridotites. Another unique characteristic of sub‐arc peridotites is the extended range of melt extraction they record. Spinel Cr#, commonly taken as a proxy for melt extraction, extends to much higher values (> 60) in sub‐arc peridotites than in ridge peridotites. This extended range of melt extraction may provide an opportunity to investigate the relationship between extent of melting and fO2. For example, Benard et al. (2018b) found a weak positive correlation (p‐value > 0.06) between fO2 and modal orthopyroxene, which they interpreted as evidence of fO2 falling with melt extraction; however, the positive correlation between spinel Cr# and fO2 in these same samples suggests the relationship between fO2 and melt extraction may be more complicated. No correlation exists between fO2 and orthopyroxene mode or spinel Cr# in the Tonga peridotites of Birner et al. (2017). More work is needed to better constrain the effects on fO2 of extracting melt from the mantle.

       Plumes.

      Mantle plumes are thermal upwellings that impinge on the lithosphere (French & Romanowicz, 2015; Montelli et al., 2006; Sleep, 1992). Capable of generating low degree mantle melts that more ably sample mantle heterogeneity, mantle plumes can produce ocean island basalts (OIB) (Dasgupta et al.; McKenzie & Onions, 1983; Stracke et al., 2005) and xenoliths wrenched from the lithospheric mantle (Frey & Roden, 1987). Both melts and xenoliths at ocean islands offer opportunities for oxybarometry; however, it remains challenging to interpret the relationship between lithospheric mantle peridotites and OIB. We begin with the volcanics.

      We have additionally compiled data from 13 studies to calculate the fO2 of 143 ocean island xenoliths. Unlike all of the ridge peridotites and СКАЧАТЬ