Название: Magma Redox Geochemistry
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119473244
isbn:
ACKNOWLEDGMENTS
We thank Alexander Pisch (SIMAP, CNRS, France) and Maria Rita Cicconi (FAU, Germany) for their valuable reviews. The precious support of AGU Books editorial staff is greatly acknowledged. This study contributes to the IdEx Université de Paris ANR‐18‐IDEX‐0001.
REFERENCES
1 Aiuppa, A., Shinohara, H., Tamburello, G., Giudice, G., Liuzzo, M., & Moretti, R. (2011). Hydrogen in the gas plume of an open‐vent volcano, Mount Etna, Italy. Journal of Geophysical Research: Solid Earth, 116(B10). https://doi.org/10.1029/2011JB008461
2 Allanore A. (2013). Electrochemical engineering of anodic oxygen evolution in molten oxides. Electrochimica Acta, 110(2013), 587–592.
3 Allanore A. (2015). Features and challenges of molten oxide electrolytes for metal extraction. Journal of the Electrochemical Society, 162, E13–E22. https://doi.org/10.1149/2.0451501jes
4 Appelo C. A. J., & Postma, D. (1996). Geochemistry, groundwater and pollution. Rotterdam: Balkema. 536 pp.
5 Armstrong, K., Frost, D. J., McCammon, C. A., Rubie, D. C., & Ballaran, T. B. (2019). Deep magma ocean formation set the oxidation state of Earth’s mantle. Science, 365(6456), 903–906. doi: 10.1126/science.aax8376
6 Baker, D. R., & Moretti, R. (2011). Modeling the solubility of sulfur in magmas: a 50‐year old geochemical challenge. Reviews in Mineralogy and Geochemistry, 73(1), 167–213. https://doi.org/10.2138/rmg.2011.73.7
7 Barton, P. B., Jr. (1970). Sulfide petrology: Mineralogical Society of America Special Paper 3, 187–198.
8 Biernat R. J., & Robins, R. G. (1969). High temperature potential/pH diagrams for the sulfur‐water system. Electrochimica Acta 14, 809–820. https://doi.org/10.1016/0013‐4686(69)87003‐9
9 Bowen, N. L., & Schairer, J. F. (1932). The system, FeO‐SiO 2. American Journal of Science, 141, 177–213. https://doi.org/10.2475/ajs.s5‐24.141.177
10 Bowen, N. L., & Schairer, J. F. (1935). The system MgO‐FeO‐SiO 2. American Journal of Science, 170, 151–217. doi: 10.2475/ajs.s5‐29.170.151
11 Buddington, A. F., & Lindsley, D. H. (1964). Iron‐titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5, 310–357. https://doi.org/10.1093/petrology/5.2.310
12 Burgisser, A., & Scaillet, B. (2007). Redox evolution of a degassing magma rising to the surface. Nature, 445(7124), 194–197. https://doi.org/10.1038/nature05509
13 Carmichael, I. S. (1991). The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology, 106(2), 129–141. https://doi.org/10.1007/BF00306429
14 Casey H. W. (2017). Oxidation‐Reduction Reactions and Eh‐pH (Pourbaix) Diagrams. In: W.M. White (ed.), Encyclopedia of Geochemistry, doi:10.1007/978‐3‐319‐39193‐9_21‐1
15 Cicconi, M. R., Moretti, R., & Neuville, D. R. (2020a). Earth’s Electrodes. Elements, 16, 3, 157–160. doi: 10.2138/gselements.16.3.157
16 Cicconi, M. R., Le Losq, C., Moretti, R., & Neuville, D. R. (2020b). Magmas are the largest repositories and carriers of Earth’s redox processes. Elements, 16, 3, 173–178. doi: 10.2138/gselements.16.3.173
17 Colson, R. O., Haskin, L. A., & Crane, D. (1990). Electrochemistry of cations in diopsidic melt: Determining diffusion rates and redox potentials from voltammetric curves. Geochimica et Cosmochimica Acta, 54, 3353–3367. https://doi.org/10.1016/0016‐7037(90)90290‐2
18 Cochain B., Neuville D. R., Henderson G. S., McCammon C., Pinet O., & Richet, P. (2012). Iron content, redox state and structure of sodium borosilicate glasses: A Raman, Mössbauer and boron K‐edge XANES spectroscopy study. Journal of the American Ceramics Society, 94, 1–12. https://doi.org/10.1111/j.1551‐2916.2011.05020.x
19 Cochain, B., Neuville, D. R., de Ligny, D., Malki, M., Testemale, D., Pinet O., & Richet P. (2013). Dynamics of iron‐bearing borosilicate melts: Effects of melt structure and composition on viscosity, electrical conductivity and kinetics of redox reactions. Journal of Non‐Crystalline Solids, 373–374, 18–27. https://doi.org/10.1016/j.jnoncrysol.2013.04.006
20 Cook, G. B., & Cooper, R. F. (2000). Iron concentration and the physical processes of dynamic oxidation in alkaline earth aluminosilicate glass. American Mineralogist, 85, 397–406. https://doi.org/10.2138/am‐2000‐0401
21 Cook, G. B., Cooper, R. F., & Wu, T. (1990). Chemical diffusion and crystalline nucleation during oxidation of ferrous ironbearing magnesium aluminosilicate glass. Journal of Non‐Crystalline Solids, 120, 207–222. https://doi.org/10.1016/0022‐3093(90)90205‐Z
22 Cooper, R. F., Fanselow, J. B., & Poker, D. B. (1996a). The mechanism of oxidation of a basaltic glass: chemical diffusion of network‐modifying cations. Geochimica et Cosmochimica Acta, 60(17), 3253–3265. https://doi.org/10.1016/0016‐7037(96)00160‐3
23 Cooper, R. F., Fanselow, J. B., Weber, J. K. R., Merkley, D. R., & Poker, D. B. (1996b). Dynamics of oxidation of a Fe2+‐bearing aluminosilicate (basaltic) melt. Science, 274, 1173–1176. doi: 10.1126/science.274.5290.1173
24 Darken, L., & Gurry, R. W. (1945). The system iron‐oxygen. I. The wüstite field and related equilibria. Journal of the American Chemical Society, 67(8), 1398–1412. https://doi.org/10.1021/ja01224a050
25 Darken, L., & Gurry, R. W. (1946). The system iron—oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. Journal of the American Chemical Society, 68(5), 798–816. https://doi.org/10.1021/ja01209a030
СКАЧАТЬ