Smart Grid and Enabling Technologies. Frede Blaabjerg
Чтение книги онлайн.

Читать онлайн книгу Smart Grid and Enabling Technologies - Frede Blaabjerg страница 34

Название: Smart Grid and Enabling Technologies

Автор: Frede Blaabjerg

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119422457

isbn:

СКАЧАТЬ GW (by 2050), as shown in Figure 2.9 [12, 26, 27].

Schematic illustration of global geothermal installed capacity from 1950 up to 2019 and its forecasting for 2020, 2030 and 2050.

      2.2.3 Hydropower Energy

      Hydropower describes the energy obtained due to the movement of water. Flowing water generates energy that can be transformed into electrical power with the use of turbines. The most widespread form of hydropower is dams, even although advanced forms of utilizing wave and tidal power are becoming more common. Hydropower is produced from water flowing in the hydrological cycle, propelled by solar radiation. It is the movement of water propelled by the force of gravity to move from higher to lower elevations that could be utilized to produce hydropower. HPPs span a wide range of scales, from a few watts to several GW. Four broad hydropower typologies are present today [29, 30]:

       Run‐of‐river hydropower: a facility that channels flowing water from a river to spin a turbine. Normally, a run‐of‐river case will have minimum or no storage possibility. Run‐of‐river delivers a constant generation of electrical power with limited flexibility of operation for daily changes in demand by water flow management.

       Storage hydropower: a large system that utilizes a dam to store water in a reservoir. Electrical power is generated by releasing water from the reservoir by a turbine, which operates a generator. Storage hydropower delivers the base load and can be shut down and operated at short notice depending on the demands of the system. It could deliver sufficient storage capacity to function without the need for the hydrological inflow for several weeks or possibly months.

       Pumped‐storage hydropower: delivers peak‐load supply, taking advantage of water which is circulated between a lower and upper reservoir by pumps, that use the additional energy from the system at periods of low demand. When energy demand is high, water is released back to the lower reservoir by turbines to generate electrical power.

       Offshore hydropower: less recognized relative to the others but an increasing group of technologies that utilize tidal currents or the energy of waves to produce electrical power from seawater.

Schematic illustration of hydropower generation by top 10 countries in 2019. Schematic illustration of the evolution of world hydropower generation since 1980.

      2.2.4 Marine Energy

       Wave energy is produced by the motion of a device either floating on the surface of the ocean or fixed to the ocean floor and there are several methods for transforming wave energy to electric energy. Wave energy is recognized as the most commercially developed of the ocean energy technologies yet is still far from where it could be practically.

       Tidal energy, the tidal cycle takes place every 12 hours as a result of the gravitational force of the moon. The difference in water height from low and high tide is potential energy. Comparable to traditional hydropower produced from dams, tidal water can be trapped in a barrage across an estuary at periods of high tide and forced by a hydro‐turbine at periods of low tide.

       Current energy, marine current is ocean water moving in one direction. Kinetic energy of the marine current can be trapped with submerged turbines that are relatively comparable to wind turbines, where the marine current forces the rotor blades to move to produce electrical energy.

       Ocean thermal energy conversion (OTEC), utilizes ocean temperature variations from the surface to depths lower than 1000 m, to obtain energy. Research focuses on two types of OTEC technologies to obtain thermal energy and transform it to electrical energy: closed and open cycles.

       Salinity gradient СКАЧАТЬ