Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 53

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ and S‐wave velocities are computed using the Voigt‐Reuss‐Hill averages for bulk and shear moduli of an isotropic aggregate. The explored pressures and temperatures are spanned by two adiabatic compression paths that start 500 K above and below a typical adiabatic compression path for each mineral. To examine the impact of uncertainties on a given finite‐strain parameter, P‐ and S‐wave velocities are then recalculated by first adding (+) and then subtracting (–) the respective uncertainty to a given parameter leaving all other parameters unchanged. The resulting difference in velocities Δv = v+v is then compared to the original velocity vVRH as:

equation

      The effect of anisotropy is illustrated in the same way by using the Voigt (V) and Reuss (R) bounds on the moduli and setting Δv = vVvR. The velocity variations d lnv are mapped over relevant pressures and temperatures for olivine, wadsleyite, ringwoodite, and bridgmanite. Note that, for each of these minerals, the results of experiments and computations need to be substantially inter‐ and extrapolated across the respective pressure–temperature space.

      Aggregate P‐ and S‐wave velocities of olivine, wadsleyite, and bridgmanite all show variations of more than 1% due to elastic anisotropy as reflected in the differences between the Voigt and Reuss bounds. The elastic anisotropy of ringwoodite single crystals is known to be fairly small (Mao et al., 2012; Sinogeikin et al., 1998; Weidner et al., 1984). As a result, aggregate P‐ and S‐wave velocities differ by less than 0.5% for ringwoodite. For minerals with significant elastic anisotropy, including the major mantle minerals olivine, wadsleyite, and bridgmanite, uncertainties on wave velocities that arise from averaging over grains with different orientations may contribute substantially to absolute uncertainties as the actual elastic response of an isotropic polycrystalline aggregate may fall somewhere in between the bounds on elastic moduli. Note that alternative bounding schemes might provide tighter bounds on elastic moduli than the Voigt and Reuss bounds (Watt et al., 1976).

      In comparison to the impact of elastic anisotropy on aggregate elastic moduli and wave velocities, the pressure derivatives images and images do not appear to strongly affect wave velocities when varied within reported uncertainties. This observation reflects the common approach of experimental and computational methods to address the response of elastic properties to compression and hence to best constrain pressure derivatives. To a certain extent, the comparatively small leverage of pressure derivatives on elastic wave velocities justifies inter‐ and extrapolations of the finite‐strain formalism to pressures and temperatures not covered by experiments or computations. Along adiabatic compression paths of typical mantle rocks, for example, changes in elastic properties that result from compression or volume reduction surpass changes that result from the corresponding adiabatic increase in temperature.

      With the exception of the Debye temperature, the parameters describing the quasi‐harmonic or thermal contribution to elastic properties all show significant impact on computed wave velocities. Both P‐ and S‐wave velocities of the minerals included in Figures 3.1 and 3.2 appear to be sensitive to variations in the Grüneisen parameter γ0, in particular at low pressures and high temperatures. In general, the isotropic volume strain derivative q0 = ηV0/γ0 of the Grüneisen parameter has more impact on P‐wave velocities while the isotropic shear strain derivative ηS0 mostly affects S‐wave velocities. The S‐wave velocities of transition zone minerals seem to be particularly sensitive to ηS0. This sensitivity arises from comparatively large uncertainties on ηS0 for these minerals and from relatively high temperatures in the transition zone at comparatively small finite strains. The exothermic phase transitions from olivine to wadsleyite and from wadsleyite to ringwoodite are expected to raise the temperatures in the transition zone in addition to adiabatic compression (Katsura et al., 2010). For olivine and bridgmanite, adiabatic compression over extended pressure ranges somewhat mitigates the influence of thermoelastic parameters as compressional contributions to elastic moduli increase at the expense of thermal contributions.