Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 31

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ x‐ray diffraction to determine stress levels in a two‐phase aggregate of Brg and Fp. This is to date the only high pressure and high temperature controlled strain rate deformation experiment on Brg. For the differential stresses plotted in Figure 2.3 for Girard et al. (2016), only data collected after ~20% strain was used, as this is where steady‐state stress levels are achieved. One should note that in Miyagi & Wenk (2016), a moment pole stress model was used to fit lattice strains, and standard deviations from this model (smaller than the symbols in Figure 2.2) represent errors in fitting and likely underestimates errors in the measurement and those due to plastic anisotropy. Thus, this study has smaller error bars than other measurements.

       Post‐Perovskite.

      For MgSiO3 pPv only two studies report differential stress as a function of pressure (Merkel et al., 2007; Miyagi et al., 2010). A third high‐temperature study reported a differential stress of 0.25–1.5 GPa at a pressure range of 130–156 GPa and 2500–3000 K (Wu et al., 2017), however, in this study the MgSiO3 pPv samples were sandwiched between layers of either NaCl or KCl and so it is likely that the measured stress levels reflect the flow strength of the NaCl or KCl pressure medium rather than that of MgSiO3 pPv.

      There is a large pressure gap between the highest‐pressure measurements on Brg at ~60 GPa and strength measurements on MgSiO3 pPv at pressures > 130 GPa (Figure 2.3). The two measurements on MgSiO3 pPv are similar though those of Merkel et al. (2007) (Figure 2.3, blue open squares) are higher than those of Miyagi et al. (2010) (Figure 2.3, green open triangles). For these measurements, Miyagi et al. (2010) used a moment pole stress model and as discussed above the small error bars (smaller than the symbols) only represent fitting errors. In contrast, the study of Merkel et al. (2007) has small errors (smaller than the symbols) but uses the method of Singh et al. (1998). The small error bars in this study are due to that fact that there are only small variations in stresses calculated on different lattice planes.

      Differences in differential stress measurements between Miyagi et al. (2010) and Merkel et al. (2007) could be due to composition. A natural enstatite was used for synthesis in Merkel et al. (2007), whereas a synthetic MgSiO3 glass was used as starting material in Miyagi et al. (2010). Another possibility is grain size. Visual comparison of raw diffraction images in these two studies shows spottier diffraction rings in Miyagi et al. (2010), which qualitatively indicates larger grain size, and may result in lower flow strength. Interestingly, if room temperature flow strength measurements on Brg are compared to pPv, the highest value measured in Brg is 11.9 GPa at a pressure of 52 GPa (Miyagi & Wenk, 2016). In pPv the highest differential stress value is 11.1 GPa at 177GPa (Miyagi et al., 2010). If one assumes that pressure increases the flow strength of Brg (as would be expected), then at room temperature pPv may be significantly weaker than Brg. A theoretical study by Ammann et al. (2010) suggests that high‐temperature strength of MgSiO3 pPv may be much lower than Brg based on calculated diffusion coefficients. Likewise, experimental work on pPv analogs found that during high temperature deformation the pPv phase is ~5–10 time weaker than the perovskite (Pv) phase (Dobson et al., 2012; Hunt et al., 2009). If room temperature flow strength is lower and if diffusion is faster in MgSiO3 pPv, there is a high likelihood that Brg is significantly stronger than MgSiO3 pPv over a range of pressure and temperature conditions. If the strength contrast between Brg and pPv is as large as the analog studies indicate then pPv may be similar or even weaker than Fp.

      2.4.2 Textures and Slip Systems in Lower Mantle Phases

СКАЧАТЬ
Mantle phase Slip system P‐T conditions
Ferropericlase {110}<1‐0> High P, low T
{100}<011> High P, high T
Ca‐Perovskite {110}<1‐10> High P low T