Modern Trends in Structural and Solid Mechanics 1. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Modern Trends in Structural and Solid Mechanics 1 - Группа авторов страница 17

Название: Modern Trends in Structural and Solid Mechanics 1

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119831877

isbn:

СКАЧАТЬ -0.04952(-0.04952) -0.03041(-0.03040) -0.00524(-0.00247) z = -0.4h- 0.58971(0.58899) 0.75187(0.75190) -2.96035(-2.96026) -6.72640(-6.72638) -1.55007(-1.46223) z = -0.5h 0.83614(0.83621) 2.17320(2.17319) 5.68229(5.68223) 7.57969(7.57976) 1.65537(1.42636) in13-4.gif (X=0, Y=0.5) z = 0.4h+ 0.22882(0.22878) 0.36501(0.36502) 0.30164(0.30166) 0.11080(0.11086) 0.01593(0.03117) z = -0.4h+ 0.17656(0.17652) 0.23854(0.23853) 0.16531(0.16530) 0.03726(0.03723) 0.00302(0.00056)
a/h Variable Clamped–Clamped Free-Free
Vel and Batra Present Vel and Batra Present
5 in14-1.gif(a/2, b/2, h/2) 1.1800 1.1771 1.5250 1.4649
in14-2.gif (a/2, b/2, 0) -4.2350 -4.2757 -6.9870 -7.2402
in14-3.gif (a/2, b/2, h) 4.5040 4.5437 7.1800 7.4300
in14-4.gif (a/2, b/2, h/3) -3.7260 -3.7185 -4.784 -4.582
in14-5.gif (a/2, b/2, 2h/3) 3.5760 3.5652 4.639 4.4364
in14-6.gif (a/2, 0, h/2) 1.4700 1.4711 1.9110 1.8494
10 in14-7.gif (a/2, b/2, h/2) 0.4460 0.4457 0.7530 0.72872
in14-8.gif (a/2, b/2, 0) -3.0000 -2.9746 -5.8980 -5.983
in14-9.gif (a/2, b/2, h) 3.0320 3.0066 5.9060 5.9901
in14-10.gif (a/2, b/2, h/3) -1.7130 -1.7113 -2.882 -2.7854
in14-11.gif (a/2, b/2, 2h/3) 1.6740 1.672 2.845 2.748
in14-12.gif (a/2, 0, h/2) 0.7220 0.7243 1.2280 1.1973

      This work differs from the classical Ritz method in that the basis functions are not required to satisfy the essential boundary conditions. In the Ritz method, we can use a penalty parameter to enforce essential boundary conditions in a weak sense and use the present basis functions. In the traditional finite element method (FEM), we discretize each layer into disjoint domains called finite elements (FEs) and the compact support of the FE basis function for a node equals all FEs sharing that node. We could use the FEM by first taking the inner product of the nine governing equations Ra = 0 with a nine-dimensional test function and integrating the result over the laminate. The matrix K in K A = F will not be symmetric. We can improve on the accuracy of the numerical solution by either increasing the order of polynomials in the basis functions or reducing the element size or both. Even though we have not tried it, in general, it takes more computational resources than those needed for the present least-squares approach. Of course, only using one FE with the current basis functions is possible. Then, the difference will be in deriving matrices K and F and satisfying boundary conditions.

      We have numerically solved three-dimensional linear elasticity equations by taking the three transverse stresses, three strain–displacement relations in the xy plane and three displacement components as independent variables and using the СКАЧАТЬ