Название: Getting Gold: A Practical Treatise for Prospectors, Miners and Students
Автор: J. C. F. Johnson
Издательство: Bookwire
Жанр: Языкознание
isbn: 4057664579058
isbn:
Gold differs in its mode of occurrence from other metals in many respects; but there is no doubt that it was once held in aqueous solution and deposited in its metallic form by electro-chemical action. It is true we do not find oxides, carbonates, or bromides of gold in Nature, nor can we feel quite sure that gold now exists naturally as a sulphide, chloride, or silicate, though the presumption is strongly that it does. If so, the deposition of the gold may be ceaselessly progressing.
Generally reef gold is finer as to size of the particles, and, as a rule, inferior in quality to alluvial. Thus, in addition to the extra labor entailed in breaking into one of the hardest of rocks, quartz, the madre de oro ("mother of gold") of the Spaniards, there is the additional labour required to pulverise the rock so as to set free the tiniest particles of the noble metal it so jealously guards. There is also the additional difficult operation of saving and gathering together these small specks, and so producing the massive cakes and bars of gold in their marketable state.
Having found payable gold in quartz on the surface, the would-be miner has next to ascertain two things. First, the strike or course of the lode; and secondly, its underlie, or dip. The strike, or course, is the direction which the lode takes lengthwise.
In Australia the term "underlie" is used to designate the angle from the perpendicular at which the lode lies in its enclosing rocks, and by "dip" the angle at which it dips or inclines lengthwise on its course. Thus, at one point the cap of a lode may appear on the surface, and some distance further the cap may be hundreds of feet below. Usually a shaft is sunk in the reef to prove the underlie, and a level, or levels, driven on the course to ascertain its direction underground, also if the gold extends, and if so, how far. This being proved, next a vertical shaft is sunk on the hanging or upper wall side, and the reef is either tapped thereby, or a cross-cut driven to intersect it.
We will now assume that our miners have found their lode payable, and have some hundreds of tons of good gold-bearing stone in sight or at the surface. They must next provide a reducing plant. Of means for crushing or triturating quartz there is no lack, and every year gives us fresh inventions for the purpose, each one better than that which preceded it, according to its inventor. Most practical men, however, prefer to continue the use of the stamper battery, which is virtually a pestle and mortar on a large scale. Why we adhere to this form of pulverising machine is that, though somewhat wasteful of power, it is easily understood, its wearing parts are cheaply and expeditiously replaced, and it is so strong that even the most perversely stupid workman cannot easily break it or put it out of order.
The stone, being pounded into sand of such degree of fineness as the gold requires, passes through a perforated iron plate called a "grating," or "screen," on to an inclined surface of copper plates faced with mercury, having small troughs, or "riffles," containing mercury, placed at certain distances apart.
The crushed quartz is carried over these copper "tables," as they are termed, thence over the blanket tables—that is, inclined planes covered with coarse serge, blankets, or other flocculent material—so that the heavy particles may be caught in the hairs, or is passed over vanners or concentrating machines. The resulting "concentrates" are washed off from time to time and reserved for secondary treatment.
To begin with, they are roasted to get rid of the sulphur, arsenic, etc., which would interfere with the amalgamation or lixiviation, and then either ground to impalpable fineness in one of the many triturating pans with mercury, or treated by chlorine or potassium cyanide.
If, however, we are merely amalgamating, then at stated periods the battery and pans are cleaned out, the amalgam rubbed or scraped from the copper plates and raised from the troughs and riffles. It is then squeezed through chamois leather, or good calico will do as well, and retorted in a large iron retort, the nozzle of which is kept in water so as to convert the mercury vapour again to the metallic form. The result is a spongy cake of gold, which is either sold as "retorted" gold or smelted into bars.
The other and more scientific methods of extracting the precious metal from its matrices, such as lixiviation or leaching, by means of solvents (chlorine, cyanogen, hyposulphite of soda, etc.), will be more fully described later on.
CHAPTER II
GOLD PROSPECTING—ALLUVIAL AND GENERAL
It is purposed in this chapter to deal specially with the operation of searching for valuable mineral by individuals or small working parties.
It is well known that much disappointment and loss accrue through lack of knowledge by prospectors, who with all their enterprise and energy are often very ignorant, not only of the probable locality, mode of occurrence, and widely differing appearance of the various valuable minerals, but also of the best means of locating and testing the ores when found. It is for the information of such as these that this chapter is mainly intended, not for scientists or miners of large experience.
All of us who have had much to do with mining know that the majority of the best mineral finds have been made by the purest accident; often by men who had no mining knowledge whatever; and that many valuable discoveries have been delayed, or, when made, abandoned as not payable, from the same cause—ignorance of the rudiments of mineralogy and mining. I have frequently been asked by prospectors, when inspecting new mineral fields, what rudimentary knowledge will be most useful to them and how it can be best obtained.
If a man can spare the time a course of lessons at some accredited school of mines will be, undoubtedly, the best possible training; but if he asks what books he should read in order to obtain some primary technical instruction, I reply: First, an introductory text-book of geology, which will tell him in the simplest and plainest language all he absolutely requires to know on this important subject. Every prospector should understand elementary geology so far as general knowledge of the history of the structure of the earth's crust and of the several actions that have taken place in the past, or are now in operation, modifying its conditions. He may with advantage go a few steps further and learn to classify the various formations into systems, groups, and series: but he can acquire all that he need absolutely know from this useful little 2s. 6d. book. Next, it is advisable to learn something about the occurrence and appearance of the valuable minerals and the formations in which they are found. For all practical purposes I can recommend Cox and Ratte's "Mines and Minerals," one of the Technical Education series of New South Wales, which deals largely with the subject from an Australian standpoint, and is therefore particularly valuable to the Australian miner, but which will be found applicable to most other gold-bearing countries. I must not, however, omit to mention an admirably compiled multum in parvo volume prepared by Mr. G. Goyder, jun., Government Assayer and Assay Instructor at the School of Mines, Adelaide. It is called the "Prospectors' Pocketbook," costs only one shilling, is well bound, and of handy size to carry. In brief, plain language it describes how a man, having learned a little of assaying, may cheaply provide himself with a portable assay plant, and fluxes, СКАЧАТЬ