Electromagnetic Metasurfaces. Christophe Caloz
Чтение книги онлайн.

Читать онлайн книгу Electromagnetic Metasurfaces - Christophe Caloz страница 12

Название: Electromagnetic Metasurfaces

Автор: Christophe Caloz

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119525172

isbn:

СКАЧАТЬ that describes the interaction of a time-harmonic field with matter. It was initially developed to describe the resonant behavior of an electron cloud. This model has been widely used to describe the temporal-frequency dispersive nature of materials and their related frequency-dependent refractive index [140]. It turns out to be also particularly useful in describing the responses of metamaterials, as they are generally made of resonant scattering particles.

      Let us consider that an electron cloud is subjected to the Lorentz electric force,

      (2.15)bold-script upper F Subscript normal e Baseline left-parenthesis bold r comma t right-parenthesis equals minus q Subscript normal e Baseline bold-script upper E Subscript loc Baseline left-parenthesis bold r comma t right-parenthesis comma

      where q Subscript normal e is the electric charge and bold-script upper E Subscript loc Baseline left-parenthesis bold r comma t right-parenthesis is the local field.4 We assume here that the magnetic force is negligible compared to the electric force, which is the case for nonrelativistic velocities, and that the nuclei, which are much heavier than the electrons, are not moving. The restoring force between the nuclei and the electrons can be expressed similarly to the force of a mass attached to a spring, i.e.

      where m Subscript normal e is the mass of the electron cloud, omega Subscript normal r is a constant analogous to the stiffness of the spring, and bold d left-parenthesis bold r comma t right-parenthesis is the displacement from equilibrium of the electron cloud. Finally, to model dissipation, we introduce the frictional force

      (2.17)bold-script upper F Subscript normal f Baseline left-parenthesis bold r comma t right-parenthesis equals minus 2 normal upper Gamma m Subscript normal e Baseline bold v left-parenthesis bold r comma t right-parenthesis comma

      where bold v left-parenthesis bold r comma t right-parenthesis is the displacement velocity of the electron cloud and normal upper Gamma is a constant representing the friction coefficient. Applying Newton's second law with these three forces, we obtain

      (2.18)m Subscript normal e Baseline StartFraction partial-differential Over partial-differential t EndFraction bold v left-parenthesis bold r comma t right-parenthesis equals minus q Subscript normal e Baseline bold-script upper E Subscript loc Baseline left-parenthesis bold r comma t right-parenthesis minus m Subscript normal e Baseline omega Subscript normal r Superscript 2 Baseline bold d left-parenthesis bold r comma t right-parenthesis minus 2 normal upper Gamma m Subscript normal e Baseline bold v left-parenthesis bold r comma t right-parenthesis period

      Rearranging the terms and noting that bold v left-parenthesis bold r comma t right-parenthesis equals partial-differential bold d left-parenthesis bold r comma t right-parenthesis slash partial-differential t, we get

      (2.21)StartFraction partial-differential squared Over partial-differential t squared EndFraction bold-script upper P left-parenthesis bold r comma t right-parenthesis plus 2 normal upper Gamma StartFraction partial-differential Over partial-differential t EndFraction bold-script upper P left-parenthesis bold r comma t right-parenthesis plus omega 0 squared bold-script upper P left-parenthesis bold r comma t right-parenthesis equals StartFraction upper N q Subscript normal e Superscript 2 Baseline Over m Subscript normal e Baseline EndFraction bold-script upper E left-parenthesis bold r comma t right-parenthesis comma

      where omega 0 equals StartRoot omega Subscript normal r Superscript 2 Baseline minus upper N q Subscript normal e Superscript 2 Baseline slash left-parenthesis 3 m Subscript normal e Baseline epsilon 0 right-parenthesis EndRoot is the resonant frequency. In the harmonic regime, this СКАЧАТЬ