Polymer Nanocomposite Materials. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Polymer Nanocomposite Materials - Группа авторов страница 12

СКАЧАТЬ ceria nanoparticles in crosslinked PVA electrospun nanofibers. Nanomaterials 6: 102.

      52 52 Shehata, N., Samir, E., Gaballah, S. et al. (2016). Embedded ceria nanoparticles in crosslinked PVA electrospun nanofibers as optical sensors for radicals. Sensors 16: 1371.

      53 53 Sunny, A.T., Vijayan, P.P., Adhikari, R. et al. (2016). Copper oxide nanoparticles in an epoxy network: microstructure, chain confinement and mechanical behaviour. Phys. Chem. Chem. Phys. 18: 19655–19667.

      54 54 Alswata, A.A., Ahmad, M.B., Al-Hada, N.M. et al. (2017). Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results Phys. 7: 723–731.

      55 55 Fambri, L., Dabrowska, I., Ceccato, R., and Pegoretti, A. (2017). Effects of fumed silica and draw ratio on nanocomposite polypropylene fibers. Polymers 9: 41.

      56 56 Wang, X. and Song, M. (2013). Toughening of polymers by graphene. Nanomater. Energy 2: 265–278.

      57 57 Paszkiewicz, S., Pawelec, I., Szymczyk, A., and Rosłaniec, Z. (2015). Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets. Polish J. Chem. Technol. 17: 74–81.

      58 58 Wang, X., Xing, W., Feng, X. et al. (2017). MoS2/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 57: 440–466.

      59 59 Ribeiro, H., Trigueiro, J.P.C., Silva, W.M. et al. (2019). Hybrid MoS2/h-BN nanofillers as synergic heat dissipation and reinforcement additives in epoxy nanocomposites. ACS Appl. Mater. Interfaces 11: 24485–24492.

      60 60 Rao, K.S., Senthilnathan, J., Ting, J.M., and Yoshimura, M. (2014). Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications. Nanoscale 6: 12758–12768.

      61 61 Shahjamali, M.M., Salvador, M., Bosman, M. et al. (2014). Edge-gold-coated silver nanoprisms: enhanced stability and applications in organic photovoltaics and chemical sensing. J. Phys. Chem. C 118: 12459–12468.

      62 62 Wan, J., Kaplan, A.F., Zheng, J. et al. (2014). Two dimensional silicon nanowalls for lithium ion batteries. J. Mater. Chem. A 2: 6051–6057.

      63 63 Bhattacharya, M. (2016). Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9: 262.

      64 64 Kumar, A.P., Depan, D., Singh Tomer, N., and Singh, R.P. (2009). Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives. Prog. Polym. Sci. 34: 479–515.

      65 65 Shifrina, Z.B., Matveeva, V.G., and Bronstein, L.M. (2020). Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites. Chem. Rev. 120: 1350–1396.

      66 66 Sotto, A., Boromand, A., Balta, S. et al. (2011). Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J. Mater. Chem. 21: 10311–10320.

      67 67 Huang, J., Zhang, K., Wang, K. et al. (2012). Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 423–424: 362–370.

      68 68 María Arsuaga, J., Sotto, A., del Rosario, G. et al. (2013). Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci. 428: 131–141.

      69 69 Zhao, S., Yan, W., Shi, M. et al. (2015). Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J. Membr. Sci. 478: 105–116.

      70 70 Macyk, W., Szaciłowski, K., Stochel, G. et al. (2010). Titanium(IV) complexes as direct TiO2 photosensitizers. Coord. Chem. Rev. 254: 2687–2701.

      71 71 Paz, Y. (2010). Application of TiO2 photocatalysis for air treatment: patents' overview. Appl. Catal., B 99: 448–460.

      72 72 Su, W., Wang, S., Wang, X. et al. (2010). Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf. Coat. Technol. 205: 465–469.

      73 73 Olad, A. and Nosrati, R. (2013). Preparation and corrosion resistance of nanostructured PVC/ZnO–polyaniline hybrid coating. Prog. Org. Coat. 76: 113–118.

      74 74 Wang, N., Fu, W., Zhang, J. et al. (2015). Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel. Prog. Org. Coat. 89: 114–122.

      75 75 Di Carlo, G., Curulli, A., Toro, R.G. et al. (2012). Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing. Langmuir 28: 5471–5479.

      76 76 Matos, A.C., Marques, C.F., Pinto, R.V. et al. (2015). Novel doped calcium phosphate-PMMA bone cement composites as levofloxacin delivery systems. Int. J. Pharm. 490: 200–208.

      77 77 Ajayan, P.M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265: 1212–1214.

      78 78 Mao, C., Zhu, Y., and Jiang, W. (2012). Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl. Mater. Interfaces 4: 5281–5286.

      79 79 Jang, J., Bae, J., and Yoon, S.-H. (2003). A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide–carbon nanotube composites. J. Mater. Chem. 13: 676–681.

      80 80 Stankovich, S., Dikin, D.A., Dommett, G.H. et al. (2006). Graphene-based composite materials. Nature 442: 282–286.

      81 81 Yousefi, N., Gudarzi, M.M., Zheng, Q. et al. (2013). Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos. Part A: Appl. Sci. Manuf. 49: 42–50.

      82 82 Yousefi, N., Sun, X., Lin, X. et al. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26: 5480–5487.

      83 83 Shen, X., Wang, Z., Wu, Y. et al. (2016). Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16: 3585–3593.

      84 84 Yousefi, N., Lin, X., Zheng, Q. et al. (2013). Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59: 406–417.

      85 85 Paton, K.R., Varrla, E., Backes, C. et al. (2014). Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13: 624–630.

      86 86 Gojny, F.H., Wichmann, M.H.G., Köpke, U. et al. (2004). Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64: 2363–2371.

      87 87 Thostenson, E.T. and Chou, T.-W. (2006). Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44: 3022–3029.

      88 88 Viets, C., Kaysser, S., and Schulte, K. (2014). Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems. Composites Part B 65: 80–88.

      89 89 Souri, H., Nam, I.W., and Lee, H.K. (2015). Electrical properties and piezoresistive evaluation of polyurethane-based composites with carbon nano-materials. Compos. Sci. Technol. 121: 41–48.

      90 90 СКАЧАТЬ