Polymer Nanocomposite Materials. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Polymer Nanocomposite Materials - Группа авторов страница 11

СКАЧАТЬ Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ∈-caprolactam. J. Mater. Res. 8: 1174–1178.

      11 11 Kojima, Y., Usuki, A., Kawasumi, M. et al. (2011). Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8: 1185–1189.

      12 12 Ray, S.S. and Bousmina, M. (2007). Polymer Nanocomposites and Their Applications. American Scientific Publishers.

      13 13 Winey, K.I. and Vaia, R.A. (2011). Polymer nanocomposites. MRS Bull. 32: 314–322.

      14 14 Verdejo, R., Bernal, M.M., Romasanta, L.J. et al. (2018). Reactive nanocomposite foams. Cell. Polym. 30: 45–62.

      15 15 Nieto, A., Lahiri, D., and Agarwal, A. (2012). Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50: 4068–4077.

      16 16 Schmidt, F.P., Ditlbacher, H., Hohenester, U. et al. (2012). Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 12: 5780–5783.

      17 17 Jung, S.-H., Oh, E., Lee, K.-H. et al. (2008). Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 8: 265–269.

      18 18 Siril, P.F., Ramos, L., Beaunier, P. et al. (2009). Synthesis of ultrathin hexagonal palladium nanosheets. Chem. Mater. 21: 5170–5175.

      19 19 Dong, X., Ji, X., Jing, J. et al. (2010). Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J. Phys. Chem. C 114: 2070–2074.

      20 20 Nayak, B.B., Behera, D., and Mishra, B.K. (2010). Synthesis of silicon carbide dendrite by the arc plasma process and observation of nanorod bundles in the dendrite arm. J. Am. Ceram. Soc. 93: 3080–3083.

      21 21 Vizireanu, S., Stoica, S.D., Luculescu, C. et al. (2010). Plasma techniques for nanostructured carbon materials synthesis. a case study: carbon nanowall growth by low pressure expanding RF plasma. Plasma Sources Sci. Technol. 19: 34016.

      22 22 Mann, A.K.P. and Skrabalak, S.E. (2011). Synthesis of single-crystalline nanoplates by spray pyrolysis: a metathesis route to Bi2WO6. Chem. Mater. 23: 1017–1022.

      23 23 Tiwari, J.N., Tiwari, R.N., and Kim, K.S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 57: 724–803.

      24 24 Kim, K.S., Zhao, Y., Jang, H. et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457: 706–710.

      25 25 Bae, S., Kim, H., Lee, Y. et al. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5: 574–578.

      26 26 Isitman, N.A., Dogan, M., Bayramli, E., and Kaynak, C. (2012). The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polym. Degrad. Stab. 97: 1285–1296.

      27 27 Shen, J., Hu, Y., Li, C. et al. (2009). Synthesis of amphiphilic graphene nanoplatelets. Small 5: 82–85.

      28 28 Li, B. and Zhong, W.-H. (2011). Review on polymer/graphite nanoplatelet nanocomposites. J. Mater. Sci. 46: 5595–5614.

      29 29 Umar, A. and Hahn, Y.B. (2006). ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology 17: 2174–2180.

      30 30 Bai, W., Zhu, X., Zhu, Z., and Chu, J. (2008). Synthesis of zinc oxide nanosheet thin films and their improved field emission and photoluminescence properties by annealing processing. Appl. Surf. Sci. 254: 6483–6488.

      31 31 Mani, G.K. and Rayappan, J.B.B. (2014). A simple and template free synthesis of branched ZnO nanoarchitectures for sensor applications. RSC Adv. 4: 64075–64084.

      32 32 Li, B.L., Setyawati, M.I., Chen, L. et al. (2017). Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces 9: 15286–15296.

      33 33 Vengatesan, M.R. and Mittal, V. (2016). Nanoparticle- and Nanofiber-Based Polymer Nanocomposites: An Overview. Wiley-VCH.

      34 34 Yang, J., Zhang, Z., Friedrich, K., and Schlarb, A.K. (2007). Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes. Macromol. Rapid Commun. 28: 955–961.

      35 35 Fahmy, T.Y.A., Mobarak, F., Fahmy, Y. et al. (2005). Nanocomposites from natural cellulose fibers incorporated with sucrose. Wood Sci. Technol. 40: 77–86.

      36 36 Garcia de Rodriguez, N.L., Thielemans, W., and Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13: 261–270.

      37 37 Fahmy, T.Y.A. and Mobarak, F. (2008). Nanocomposites from natural cellulose fibers filled with kaolin in presence of sucrose. Carbohydr. Polym. 72: 751–755.

      38 38 Lee, K.-Y., Bharadia, P., Blaker, J.J., and Bismarck, A. (2012). Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos. Part A: Appl. Sci. Manuf. 43: 2065–2074.

      39 39 Ibrahim, I.D., Jamiru, T., Sadiku, E.R. et al. (2016). Impact of surface modification and nanoparticle on sisal fiber reinforced polypropylene nanocomposites. J. Nanotechnol. 2016: 1–9.

      40 40 Lonjon, A., Laffont, L., Demont, P. et al. (2010). Structural and electrical properties of gold nanowires/P(VDF-TrFE) nanocomposites. J. Phys. D 43: 345401.

      41 41 Xu, Y. and Hoa, S.V. (2008). Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68: 854–861.

      42 42 Pozegic, T.R., Anguita, J.V., Hamerton, I. et al. (2016). Multi-functional carbon fibre composites using carbon nanotubes as an alternative to polymer sizing. Sci. Rep. 6: 37334.

      43 43 Ulus, H., Şahin, Ö.S., and Avcı, A. (2016). Enhancement of flexural and shear properties of carbon fiber/epoxy hybrid nanocomposites by boron nitride nano particles and carbon nano tube modification. Fibers Polym. 16: 2627–2635.

      44 44 Ye, G. (2017). Preparation of poly(7-formylindole)/carbon fibers nanocomposites and their high capacitance behaviors. Int. J. Electrochem. Sci. 12: 8467–8476.

      45 45 Lu, X., Chao, D., Chen, J. et al. (2006). Preparation and characterization of inorganic/organic hybrid nanocomposites based on Au nanoparticles and polypyrrole. Mater. Lett. 60: 2851–2854.

      46 46 Subedi, D.P., Madhup, D.K., Sharma, A. et al. (2012). Retracted: study of the wettability of ZnO nanofilms. Int. Nano Lett. 2: 1.

      47 47 Ślosarczyk, A., Barełkowski, M., Niemier, S., and Jakubowska, P. (2015). Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions. J. Sol–Gel Sci. Technol. 76: 227–232.

      48 48 Dhandapani, S., Nayak, S.K., and Mohanty, S. (2016). Compatibility effect of titanium dioxide nanofiber on reinforced biobased nanocomposites: thermal, mechanical, and morphology characterization. J. Vinyl Add. Technol. 22: 529–538.

      49 49 Ma, J.-L., Chan, T.-M., and Young, B. (2016). Experimental investigation of cold-formed high strength steel tubular beams. Eng. Struct. 126: 200–209.

      50 50 Saranya, M., Ramachandran, R., and Wang, F. (2016). Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J. Sci. Adv. Mater. Devices 1: 454–460.

      51 51 СКАЧАТЬ