Renewable Integrated Power System Stability and Control. Hassan Bevrani
Чтение книги онлайн.

Читать онлайн книгу Renewable Integrated Power System Stability and Control - Hassan Bevrani страница 15

СКАЧАТЬ https://doi.org/10.1109/59.317682.

      42 42. Trovato, V., Sanz, I.M., Chaudhuri, B., and Strbac, G. (2017). Advanced control of thermostatic loads for rapid frequency response in Great Britain. IEEE Transactions on Power Systems 32 (3): 2106–2117.

      43 43. Delavari, A. and Kamwa, I. (2018). Improved optimal decentralized load modulation for power system primary frequency regulation. IEEE Transactions on Power Systems 33 (1): 1013–1025.

      44 44. Pan, C. and Liaw, C. (1989). An adaptive controller for power system load‐frequency control. IEEE Transactions on Power Systems 4 (1): 122–128.

      45 45. Vajk, I., Vajta, M., Keviczky, L. et al. (1985). Adaptive load‐frequency control of the Hungarian power system. Automatica 21 (2): 129–137.

      46 46. Wang, W., Li, Y., Cao, Y. et al. (2018). Adaptive droop control of VSC‐MTDC system for frequency support and power sharing. IEEE Transactions on Power Systems 33 (2): 1264–1274.

      47 47. Prostejovsky, A.M., Marinelli, M., Rezkalla, M. et al. (2018). Tuningless load frequency control through active engagement of distributed resources. IEEE Transactions on Power Systems 33 (3): 2929–2939.

      48 48. Stankovic, A.M., Tadmor, G., and Sakharuk, T.A. (1998). On robust control analysis and design for load frequency regulation. IEEE Transactions on Power Systems 13 (2): 449–455.

      49 49. Rerkpreedapong, D., Hasanovic, A., and Feliachi, A. (2003). Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Transactions on Power Systems 18 (2): 855–861.

      50 50. Ojaghi, P. and Rahmani, M. (2017). LMI‐based robust predictive load frequency control for power systems with communication delays. IEEE Transactions on Power Systems 32 (5): 4091–4100.

      51 51. Zhang, C., Jiang, L., Wu, Q.H. et al. (2013). Delay‐dependent robust load frequency control for time delay power systems. IEEE Transactions on Power Systems 28 (3): 2192–2201.

      52 52. Zhao, J., Mili, L., and Milano, F. (2018). Robust frequency divider for power system online monitoring and control. IEEE Transactions on Power Systems 33 (4): 4414–4423.

      53 53. Aliabadi, S.F., Taher, S.A., and Shahidehpour, M. (2018). Smart deregulated grid frequency control in presence of renewable energy resources by EVs charging control. IEEE Transactions on Smart Grid 9 (2): 1073–1085.

      54 54. Wang, D., Liang, L., Hu, J. et al. (2018). Analysis of low‐frequency stability in grid tied DFIGs by non‐minimum phase zero identification. IEEE Transactions on Energy Conversion 33 (2): 716–729.

      55 55. Liu, Y., Jiang, L., Wu, Q.H., and Zhou, X. (2017). Frequency control of DFIG‐based wind power penetrated power systems using switching angle controller and AGC. IEEE Transactions on Power Systems 32 (2): 1553–1567.

      56 56. Pradhan, C. and Bhende, C.N. (2017). Frequency sensitivity analysis of load damping coefficient in wind farm‐integrated power system. IEEE Transactions on Power Systems 32 (2): 1016–1029.

      57 57. Golpira, H., Seifi, H., Messina, A.R., and Haghifam, M. (2016). Maximum penetration level of microgrids in large‐scale power systems: frequency stability viewpoint. IEEE Transactions on Power Systems 31 (6): 5163–5171.

      58 58. Leon, A.E. (2018). Short‐term frequency regulation and inertia emulation using an MMC‐based MTDC system. IEEE Transactions on Power Systems 33 (3): 2854–2863.

      59 59. Rakhshani, E., Remon, D., Cantarellas, A.M. et al. (2017). Virtual synchronous power strategy for multiple HVDC interconnections of multi‐area AGC power systems. IEEE Transactions on Power Systems 32 (3): 1665–1677.

      60 60. Li, D., Zhu, Q., Lin, S., and Bian, X.Y. (2017). A self‐adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Transactions on Energy Conversion 32 (1): 397–398.

      61 61. Wu, Y., Yang, W., Hu, Y., and Dzung, P.Q. (2019). Frequency regulation at a wind farm using time varying inertia and droop controls. IEEE Transactions on Industry Applications 55 (1): 213–224.

      62 62. Fang, J., Li, H., Tang, Y., and Blaabjerg, F. (2018). Distributed power system virtual inertia implemented by grid‐connected power converters. IEEE Transactions on Power Electronics 33 (10): 8488–8499.

      63 63. Li, Y., Xu, Z., Ostergaard, J., and Hill, D.J. (2017). Coordinated control strategies for offshore wind farm integration via VSC‐HVDC for system frequency support. IEEE Transactions on Energy Conversion 32 (3): 843–856.

      64 64. Ahmadyar, A.S. and Verbic, G. (2017). Coordinated operation strategy of wind farms for frequency control by exploring wake interaction. IEEE Transactions on Sustainable Energy 8 (1): 230–238.

      65 65. Izadkhast, S., Garcia‐Gonzalez, P., Frias, P., and Bauer, P. (2017). Design of plug‐in electric vehicle's frequency‐droop controller for primary frequency control and performance assessment. IEEE Transactions on Power Systems 32 (6): 4241–4254.

      66 66. Hwang, M., Muljadi, E., Jang, G., and Kang, Y.C. (2017). Disturbance‐adaptive short‐term frequency support of a DFIG associated with the variable gain based on the ROCOF and rotor speed. IEEE Transactions on Power Systems 32 (3): 1873–1881.

      67 67. Attya, A.B.T. and Dominguez‐Garcia, J.L. (2018). Insights on the provision of frequency support by wind power and the impact on energy systems. IEEE Transactions on Sustainable Energy 9 (2): 719–728.

      68 68. Tielens, P. and Van Hertem, D. (2017). Receding horizon control of wind power to provide frequency regulation. IEEE Transactions on Power Systems 32 (4): 2663–2672.

      69 69. Garmroodi, M., Verbic, G., and Hill, D.J. (2018). Frequency support from wind turbine generators with a time‐variable droop characteristic. IEEE Transactions on Sustainable Energy 9 (2): 676–684.

      70 70. Khooban, M., Dragicevic, T., Blaabjerg, F., and Delimar, M. (2018). Shipboard microgrids: a novel approach to load frequency control. IEEE Transactions on Sustainable Energy 9 (2): 843–852.

      71 71. Benysek, G., Bojarski, J., Smolenski, R. et al. (2018). Application of stochastic decentralized active demand response (DADR) system for load frequency control. IEEE Transactions on Smart Grid 9 (2): 1055–1062.

      72 72. Vrettos, E., Ziras, C., and Andersson, G. (2017). Fast and reliable primary frequency reserves from refrigerators with decentralized stochastic control. IEEE Transactions on Power Systems 32 (4): 2924–2941.

      73 73. Short, J.A., Infield, D.G., and Freris, L.L. (2007). Stabilization of grid frequency through dynamic demand control. IEEE Transactions on Power Systems 22 (3): 1284–1293.

      74 74. Molina‐Garcia, A., Bouffard, F., and Kirschen, D.S. (2011). Decentralized demand‐side contribution to primary frequency control. IEEE Transactions on Power Systems 26 (1): 411–419.

      75 75. Zhao, H., Wu, Q., Huang, S. et al. (2018). Hierarchical control of thermostatically controlled loads for primary frequency support. IEEE Transactions on Smart Grid 9 (4): 2986–2998.

      76 76. Yao, E., Wong, V.W.S., and Schober, R. (2017). Robust frequency regulation capacity scheduling algorithm for electric vehicles. IEEE Transactions on Smart Grid 8 (2): 984–997.

      77 77. Ferraro, P., Crisostomi, E., Raugi, M., and Milano, F. (2017). Analysis of the impact of microgrid penetration on power system dynamics. IEEE Transactions on Power Systems 32 (5): 4101–4109.

СКАЧАТЬ