Bats of Southern and Central Africa. Ara Monadjem
Чтение книги онлайн.

Читать онлайн книгу Bats of Southern and Central Africa - Ara Monadjem страница 17

Название: Bats of Southern and Central Africa

Автор: Ara Monadjem

Издательство: Ingram

Жанр: Биология

Серия:

isbn: 9781776145843

isbn:

СКАЧАТЬ ecological and economic benefits. Research sponsored by Bat Conservation International has shown that the seed dispersal and pollination activities of fruit-eating bats are vital to the survival of equatorial and tropical rainforests. Some 300 plant species in the Old World tropics alone depend on bats for pollination or seed dispersal or both, providing more than 450 economically important products valued at hundreds of millions of US dollars annually (Fujita and Tuttle 1991). Seeds dropped by tropical bats are estimated to contribute towards some 95% of forest regrowth on cleared land in the African tropics (www.batcon.org). Certain bat-dependent trees, such as the baobab, Adansonia digitata (whose white flowers may help attract bats at night), are ecologically crucial, supporting dozens of other species. Extinction of baobabs resulting from the extinction of the Epomophorus species that pollinate them would trigger a cascade of linked extinctions. While recent observation anecdotally recorded Epomophorus sp. individuals visiting baobab flowers for nectar in Zimbabwe, efforts involving citizen scientists monitoring flowering baobabs (from dusk to midnight) in the Limpopo Province of South Africa recorded no fruit bat flower visitors during 32 tree-nights of observations (Taylor 2018). A range of insect flower visitors, including moths and beetles, were recorded and these attracted relatively high insectivorous bat activity.

      Different species of bats roost in various places during the day, such as among foliage, in hollows or crevices, and in specialised roosts, notably caves (Figures 13, 14, 18).

image image

      Most Pteropodidae, as well as Taphozous mauritianus, Neoromicia nana, Glauconycteris variegata and Myotis welwitschii, hang up or cling onto surfaces in trees or shrubs. Pteropodidae, G. variegata and M. welwitschii hang by their hind claws from the undersurface of leaves or branches, the last two hanging in a disguised manner among clumps of leaves. Taphozous mauritianus roosts face-down, anchored by its hind claws, but with its belly, thumb claws and hind claws in contact with the surface of a tree or wall. Neoromicia nana clings with its ventral surface in contact with the smooth surface of unfurling banana leaves (Taylor 2000). Crypsis of the pelage is a key adaptation for many foliage-roosting bats, such as Taphozous mauritianus and many species of Glauconycteris, Kerivoula and Myotis. Many of the fruit bats also rely on disruptive colouration, exemplified in the ear spots of Epomophorus species (Fenton 1992, Fenton and Simmons 2015).

      Hollow-roosting bats occupy underground caves, hollows in trees, and anthropogenic hollows such as roofs and basements of houses, tunnels or cavities in dam walls, and abandoned mine shafts (Kunz and Lumsden 2003). Some members of Vespertilionidae, Emballonuridae and Molossidae roost in tree hollows. Radio-tracked Scotophilus viridis and S. dinganii occupied hollow Colophospermum mopane trees in the Kruger National Park and Combretum imberbe in Eswatini (Fenton et al. 1985, Monadjem et al. 2010a). The presence of mature trees in woodlands is essential for the persistence of tree-roosting bats, which are adversely affected by the removal of such trees (Fenton et al. 1998a). Similarly, ‘homogenisation’ of savanna landscapes through the impact of megaherbivores (particularly elephants) also acts to reduce bat diversity (McCleery et al. 2018). While a large amount of research has been carried out on tree-roosting microbats living in American forests, very little is known about such species in southern Africa.

      Scotophilus dinganii and S. viridis are frequently found roosting in hollow spaces in the attics of houses, as opposed to the crevice-like roosts used by many Molossidae. Occasionally, so-called ‘cave bats’, such as Nycteridae, Rhinolophidae and Hipposideridae, may be found in larger attics or basements (Voigt et al. 2016) (Figure 15), and also aardvark (Orycteropus afer) burrows in the case of Nycteris thebaica (Monadjem et al. 2009).

image

      Cave-dwelling bats form the largest aggregations known of any mammal. As many as 20 million bats may occupy Bracken Caves in Texas (Tuttle 1997). In southern Africa, cave-dwelling bats include Rousettus aegyptiacus, Myotis tricolor, and species of the Rhinolophidae, Hipposideridae, Nycteridae, and Miniopteridae. South Africa’s largest known cave colony of bats, at De Hoop Guano Cave, near Bredasdorp in the Western Cape, comprises some 300,000 bats (McDonald et al. 1990a). Apart from De Hoop Guano Cave, other well-known cave bat roosts include Kogelbeen Cave in the Northern Cape (Monadjem et al. 2008), various caves within the Cradle of Humankind World Heritage Site in Gauteng, and Mission Rocks in the Greater St Lucia Wetlands Park in KwaZulu-Natal in South Africa; Arnhem Cave and several others in Namibia (Churchill et al. 1997); a cave system harbouring eight bat species on the Cheringoma Plateau, Mozambique (Monadjem et al. 2010b); Gcwihaba (Drotskys') Caves in Botswana (Smithers 1971); a series of caves in northern and central Zimbabwe (Cotterill and Fergusson 1999, Truluck 1992); and Leopard’s Hill Cave and other caves in Zambia (Whitaker СКАЧАТЬ