Название: (Не)совершенная случайность. Как случай управляет нашей жизнью
Автор: Леонард Млодинов
Жанр: Математика
isbn: 978-5-904584-56-6
isbn:
Но почему умножение, а не сложение? Предположим, у вас фотографии 100 парней, с которыми вы познакомились через сайт знакомств в Интернете, тех самых парней, в профиле у которых висит фотография, напоминающая Тома Круза, а в жизни они скорее смахивают на Дэнни Де Вито. И вот вы подбираете наиболее привлекательных кандидатов. Предположим также, что на оборотной стороне каждой фотографии вы пишете два качества парня, к примеру, честный («да» или «нет») и привлекательный («да» или «нет»). И, наконец, предположим, что 1 из 10 возможных родственных душ получает в каждом случае «да» или «нет». Сколько парней из 100 пройдут тест по обеим категориям? Возьмем честность как основную черту (впрочем, можно основной сделать и привлекательность). Поскольку 1 из 10 получает «да» в категории «честный», в итоге останутся 10 парней из 100. Сколько парней из этих 10 окажутся привлекательными? Снова 1 из 10. В итоге у вас остается одна фотография. Первые 10 из 100 снижают вероятность на 1/10, то же самое происходит и при следующем отборе – 1 из 10. Как результат, 1 из 100. Вот почему мы умножаем. И если ваши требования не ограничиваются честностью и привлекательностью, придется все умножать и умножать, так что… удачи!
Прежде чем мы продолжим, стоит обратить внимание на одну важную деталь: условие «если два вероятных события, А и В, не зависят друг от друга». Предположим, в самолете осталось 1 свободное место, а регистрацию не прошли еще 2 пассажира. Предположим, что работники аэропорта по своему опыту знают: в 2 из 3 случаев пассажир, забронировавший место, все же прибывает. Воспользовавшись правилом умножения, бортпроводница у входа на посадку может прийти к следующему выводу: вероятность того, что ей придется иметь дело с недовольным пассажиром, равна 2/3 × 2/3, то есть примерно 44 %. С другой стороны, вероятность того, что пассажир не явится вовсе, а самолет так и улетит с одним незанятым местом, равна 1/3 × 1/3, то есть примерно 11 %. Но это при условии того, что пассажиры не зависят друг от друга. А если, скажем, они летят вместе? В таком случае вышеприведенные выкладки не действуют. Вероятность того, что прибудут оба пассажира, равна 2 из 3 – такая же, что и вероятность появления одного пассажира. Важно не забывать, что суммарная вероятность из простых вероятностей получается только при условии, если события никоим образом не связаны друг с другом.
Правило, которым мы только СКАЧАТЬ